Three Aspects on Using Convolutional Neural Networks for Computer-Aided Detection in Medical Imaging View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Hoo-Chang Shin , Holger R. Roth , Mingchen Gao , Le Lu , Ziyue Xu , Isabella Nogues , Jianhua Yao , Daniel Mollura , Ronald M. Summers

ABSTRACT

Deep convolutional neuralnetworks (CNNs) enablelearning trainable, highlyrepresentativeandhierarchicalimage feature from sufficient training data which makes rapid progress in computer vision possible. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pretrained CNN features, and transfer learning, i.e., fine-tuning CNN models pretrained from natural image dataset (such as large-scale annotated natural image database: ImageNet) to medical image tasks. In this chapter, we exploit three important factors of employing deep convolutional neural networks to computer-aided detection problems. First, we exploit and evaluate several different CNN architectures including from shallower to deeper CNNs: classical CifarNet, to recent AlexNet and state-of-the-art GoogLeNet and their variants. The studied models contain five thousand to 160 million parameters and vary in the numbers of layers. Second, we explore the influence of dataset scales and spatial image context configurations on medical image classification performance. Third, when and why transfer learning from the pretrained ImageNet CNN models (via fine-tuning) can be useful for medical imaging tasks are carefully examined. We study two specific computer-aided detection (CADe) problems, namely thoracoabdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection and report the first fivefold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive quantitative evaluation, CNN model analysis, and empirical insights can be helpful to the design of high-performance CAD systems for other medical imaging tasks, without loss of generality. More... »

PAGES

113-136

Book

TITLE

Deep Learning and Convolutional Neural Networks for Medical Image Computing

ISBN

978-3-319-42998-4
978-3-319-42999-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-42999-1_8

DOI

http://dx.doi.org/10.1007/978-3-319-42999-1_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090661968


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health Clinical Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Hoo-Chang", 
        "id": "sg:person.01154165623.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154165623.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health Clinical Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roth", 
        "givenName": "Holger R.", 
        "id": "sg:person.01331447262.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health Clinical Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Mingchen", 
        "id": "sg:person.01222313370.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222313370.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health Clinical Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Le", 
        "id": "sg:person.01353423536.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health Clinical Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Ziyue", 
        "id": "sg:person.0705635036.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705635036.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health Clinical Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nogues", 
        "givenName": "Isabella", 
        "id": "sg:person.07400503505.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07400503505.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health Clinical Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Jianhua", 
        "id": "sg:person.012366760067.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health Clinical Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mollura", 
        "givenName": "Daniel", 
        "id": "sg:person.01312676340.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312676340.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institutes of Health Clinical Center", 
          "id": "https://www.grid.ac/institutes/grid.410305.3", 
          "name": [
            "National Institutes of Health Clinical Center"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Summers", 
        "givenName": "Ronald M.", 
        "id": "sg:person.011331054577.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-24553-9_62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000157973", 
          "https://doi.org/10.1007/978-3-319-24553-9_62"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2012.231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003742061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2006.18.7.1527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004707137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2011.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005034623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/21681163.2015.1124249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005532781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/219717.219748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005662680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-19992-4_46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009611012", 
          "https://doi.org/10.1007/978-3-319-19992-4_46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-015-0816-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009767488", 
          "https://doi.org/10.1007/s11263-015-0816-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2063576.2064004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009824444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2012.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011379533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2012.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011379533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24574-4_78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014954904", 
          "https://doi.org/10.1007/978-3-319-24574-4_78"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-40763-5_51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014968475", 
          "https://doi.org/10.1007/978-3-642-40763-5_51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-014-0733-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017073734", 
          "https://doi.org/10.1007/s11263-014-0733-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10443-0_39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018633844", 
          "https://doi.org/10.1007/978-3-319-10443-0_39"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2015.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023638731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10584-0_23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024540204", 
          "https://doi.org/10.1007/978-3-319-10584-0_23"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-05530-5_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030844824", 
          "https://doi.org/10.1007/978-3-319-05530-5_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2014.12.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031059013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10590-1_53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032233097", 
          "https://doi.org/10.1007/978-3-319-10590-1_53"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24553-9_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034209570", 
          "https://doi.org/10.1007/978-3-319-24553-9_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24571-3_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034760966", 
          "https://doi.org/10.1007/978-3-319-24571-3_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24553-9_72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037469380", 
          "https://doi.org/10.1007/978-3-319-24553-9_72"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compmedimag.2011.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038124924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-014-0777-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042985411", 
          "https://doi.org/10.1007/s11263-014-0777-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639080", 
          "https://doi.org/10.1007/978-3-319-10404-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639080", 
          "https://doi.org/10.1007/978-3-319-10404-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639080", 
          "https://doi.org/10.1007/978-3-319-10404-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639080", 
          "https://doi.org/10.1007/978-3-319-10404-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-10404-1_68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044639080", 
          "https://doi.org/10.1007/978-3-319-10404-1_68"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-13972-2_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046521486", 
          "https://doi.org/10.1007/978-3-319-13972-2_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2647868.2654889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052031051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:visi.0000029664.99615.94", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052687286", 
          "https://doi.org/10.1023/b:visi.0000029664.99615.94"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.726791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.279181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2011.2168234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2013.2241448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2014.2377694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2015.2393954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2015.2482920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2012.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2013.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2015.2389824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2015.2437384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218488598000094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062977837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/embc.2015.7318458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079204946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3065386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085642448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3065386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085642448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-14104-6_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089704381", 
          "https://doi.org/10.1007/978-3-319-14104-6_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2008.4587633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093176609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093337962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2011.5995359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093533787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvprw.2014.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093645378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093985706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093997066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2014.222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094012327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094291017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2015.7163871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094395518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094935897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icarcv.2014.7064414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094981103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2016.7493497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094994570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2015.7163869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095379264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095689025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095714739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.25.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099341617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.26.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099383250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.28.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099426737"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "Deep convolutional neuralnetworks (CNNs) enablelearning trainable, highlyrepresentativeandhierarchicalimage feature from sufficient training data which makes rapid progress in computer vision possible. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pretrained CNN features, and transfer learning, i.e., fine-tuning CNN models pretrained from natural image dataset (such as large-scale annotated natural image database: ImageNet) to medical image tasks. In this chapter, we exploit three important factors of employing deep convolutional neural networks to computer-aided detection problems. First, we exploit and evaluate several different CNN architectures including from shallower to deeper CNNs: classical CifarNet, to recent AlexNet and state-of-the-art GoogLeNet and their variants. The studied models contain five thousand to 160 million parameters and vary in the numbers of layers. Second, we explore the influence of dataset scales and spatial image context configurations on medical image classification performance. Third, when and why transfer learning from the pretrained ImageNet CNN models (via fine-tuning) can be useful for medical imaging tasks are carefully examined. We study two specific computer-aided detection (CADe) problems, namely thoracoabdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection and report the first fivefold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive quantitative evaluation, CNN model analysis, and empirical insights can be helpful to the design of high-performance CAD systems for other medical imaging tasks, without loss of generality.", 
    "editor": [
      {
        "familyName": "Lu", 
        "givenName": "Le", 
        "type": "Person"
      }, 
      {
        "familyName": "Zheng", 
        "givenName": "Yefeng", 
        "type": "Person"
      }, 
      {
        "familyName": "Carneiro", 
        "givenName": "Gustavo", 
        "type": "Person"
      }, 
      {
        "familyName": "Yang", 
        "givenName": "Lin", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-42999-1_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-42998-4", 
        "978-3-319-42999-1"
      ], 
      "name": "Deep Learning and Convolutional Neural Networks for Medical Image Computing", 
      "type": "Book"
    }, 
    "name": "Three Aspects on Using Convolutional Neural Networks for Computer-Aided Detection in Medical Imaging", 
    "pagination": "113-136", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-42999-1_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "36e4148e8fe70f24dbe818c8567f15b17a3ceccfe92a168ee29d117b671bcf87"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090661968"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-42999-1_8", 
      "https://app.dimensions.ai/details/publication/pub.1090661968"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000279.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-42999-1_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42999-1_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42999-1_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42999-1_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42999-1_8'


 

This table displays all metadata directly associated to this object as RDF triples.

337 TRIPLES      23 PREDICATES      88 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-42999-1_8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N77e1645e553b4dda9b5b76d5acd9fd52
4 schema:citation sg:pub.10.1007/978-3-319-05530-5_16
5 sg:pub.10.1007/978-3-319-10404-1_68
6 sg:pub.10.1007/978-3-319-10443-0_39
7 sg:pub.10.1007/978-3-319-10584-0_23
8 sg:pub.10.1007/978-3-319-10590-1_53
9 sg:pub.10.1007/978-3-319-13972-2_8
10 sg:pub.10.1007/978-3-319-14104-6_16
11 sg:pub.10.1007/978-3-319-19992-4_46
12 sg:pub.10.1007/978-3-319-24553-9_62
13 sg:pub.10.1007/978-3-319-24553-9_68
14 sg:pub.10.1007/978-3-319-24553-9_72
15 sg:pub.10.1007/978-3-319-24571-3_8
16 sg:pub.10.1007/978-3-319-24574-4_78
17 sg:pub.10.1007/978-3-642-40763-5_51
18 sg:pub.10.1007/s11263-014-0733-5
19 sg:pub.10.1007/s11263-014-0777-6
20 sg:pub.10.1007/s11263-015-0816-y
21 sg:pub.10.1023/b:visi.0000029664.99615.94
22 https://doi.org/10.1016/j.compmedimag.2011.07.003
23 https://doi.org/10.1016/j.media.2011.05.005
24 https://doi.org/10.1016/j.media.2012.11.001
25 https://doi.org/10.1016/j.media.2015.08.001
26 https://doi.org/10.1016/j.neuroimage.2014.12.061
27 https://doi.org/10.1080/21681163.2015.1124249
28 https://doi.org/10.1109/5.726791
29 https://doi.org/10.1109/72.279181
30 https://doi.org/10.1109/cvpr.2005.177
31 https://doi.org/10.1109/cvpr.2008.4587633
32 https://doi.org/10.1109/cvpr.2009.5206848
33 https://doi.org/10.1109/cvpr.2011.5995359
34 https://doi.org/10.1109/cvpr.2014.222
35 https://doi.org/10.1109/cvpr.2015.7298594
36 https://doi.org/10.1109/cvpr.2015.7298643
37 https://doi.org/10.1109/cvpr.2015.7298668
38 https://doi.org/10.1109/cvpr.2015.7298712
39 https://doi.org/10.1109/cvpr.2015.7298959
40 https://doi.org/10.1109/cvprw.2014.131
41 https://doi.org/10.1109/embc.2015.7318458
42 https://doi.org/10.1109/icarcv.2014.7064414
43 https://doi.org/10.1109/isbi.2015.7163869
44 https://doi.org/10.1109/isbi.2015.7163871
45 https://doi.org/10.1109/isbi.2016.7493497
46 https://doi.org/10.1109/tmi.2011.2168234
47 https://doi.org/10.1109/tmi.2013.2241448
48 https://doi.org/10.1109/tmi.2014.2377694
49 https://doi.org/10.1109/tmi.2015.2393954
50 https://doi.org/10.1109/tmi.2015.2482920
51 https://doi.org/10.1109/tpami.2012.143
52 https://doi.org/10.1109/tpami.2012.231
53 https://doi.org/10.1109/tpami.2013.96
54 https://doi.org/10.1109/tpami.2015.2389824
55 https://doi.org/10.1109/tpami.2015.2437384
56 https://doi.org/10.1142/s0218488598000094
57 https://doi.org/10.1145/2063576.2064004
58 https://doi.org/10.1145/219717.219748
59 https://doi.org/10.1145/2647868.2654889
60 https://doi.org/10.1145/3065386
61 https://doi.org/10.1162/neco.2006.18.7.1527
62 https://doi.org/10.5244/c.25.76
63 https://doi.org/10.5244/c.26.80
64 https://doi.org/10.5244/c.28.6
65 schema:datePublished 2017
66 schema:datePublishedReg 2017-01-01
67 schema:description Deep convolutional neuralnetworks (CNNs) enablelearning trainable, highlyrepresentativeandhierarchicalimage feature from sufficient training data which makes rapid progress in computer vision possible. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pretrained CNN features, and transfer learning, i.e., fine-tuning CNN models pretrained from natural image dataset (such as large-scale annotated natural image database: ImageNet) to medical image tasks. In this chapter, we exploit three important factors of employing deep convolutional neural networks to computer-aided detection problems. First, we exploit and evaluate several different CNN architectures including from shallower to deeper CNNs: classical CifarNet, to recent AlexNet and state-of-the-art GoogLeNet and their variants. The studied models contain five thousand to 160 million parameters and vary in the numbers of layers. Second, we explore the influence of dataset scales and spatial image context configurations on medical image classification performance. Third, when and why transfer learning from the pretrained ImageNet CNN models (via fine-tuning) can be useful for medical imaging tasks are carefully examined. We study two specific computer-aided detection (CADe) problems, namely thoracoabdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection and report the first fivefold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive quantitative evaluation, CNN model analysis, and empirical insights can be helpful to the design of high-performance CAD systems for other medical imaging tasks, without loss of generality.
68 schema:editor N3315e45071694011bc0851be8dcd1abe
69 schema:genre chapter
70 schema:inLanguage en
71 schema:isAccessibleForFree false
72 schema:isPartOf Nb3e5e4ad99ed4c5bb0c49112c74ac008
73 schema:name Three Aspects on Using Convolutional Neural Networks for Computer-Aided Detection in Medical Imaging
74 schema:pagination 113-136
75 schema:productId N93787125bed74079bf0c1f2f5ae1ac37
76 Nbb7d96cb8b1b45079e34a1026412a885
77 Nf3c24e395be3487a896663b65b8c3fff
78 schema:publisher N4a919a60d5694a52b5cdd16a382a0bf7
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090661968
80 https://doi.org/10.1007/978-3-319-42999-1_8
81 schema:sdDatePublished 2019-04-16T00:52
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Nff98cd200cfd4d7f8925c7ade7afacea
84 schema:url http://link.springer.com/10.1007/978-3-319-42999-1_8
85 sgo:license sg:explorer/license/
86 sgo:sdDataset chapters
87 rdf:type schema:Chapter
88 N08111664b9e84d83bed540891d73c4c1 schema:familyName Yang
89 schema:givenName Lin
90 rdf:type schema:Person
91 N176c049e3cb8427197729968b24dfbf0 rdf:first N1d42e69111004d93ad46f4368b8ecd11
92 rdf:rest N3d334b65e03e4cf38e041e896317c3b6
93 N1d42e69111004d93ad46f4368b8ecd11 schema:familyName Zheng
94 schema:givenName Yefeng
95 rdf:type schema:Person
96 N3315e45071694011bc0851be8dcd1abe rdf:first Nad54248c2c964aea8a0335baa5850fae
97 rdf:rest N176c049e3cb8427197729968b24dfbf0
98 N3d334b65e03e4cf38e041e896317c3b6 rdf:first Nc0d60391bb144612b61ec90a61e39d14
99 rdf:rest N8089e374c3c64b1fb727e75876869ad9
100 N4a919a60d5694a52b5cdd16a382a0bf7 schema:location Cham
101 schema:name Springer International Publishing
102 rdf:type schema:Organisation
103 N5858ac2ea4c34dda8c711b4bc060af79 rdf:first sg:person.07400503505.29
104 rdf:rest N9b30b7d7dfd9453b9817aeab340ae550
105 N5bc1d7e61cc24b5f8382bac4ba43c232 rdf:first sg:person.01331447262.96
106 rdf:rest Nc5d4bf0a9d554b9db1db8b2f2af77ecf
107 N73b9e030c3bf40ac83a20a3c38962fbc rdf:first sg:person.01353423536.73
108 rdf:rest Nc509c3c10fe2483fad15faedd4e59443
109 N77e1645e553b4dda9b5b76d5acd9fd52 rdf:first sg:person.01154165623.33
110 rdf:rest N5bc1d7e61cc24b5f8382bac4ba43c232
111 N8089e374c3c64b1fb727e75876869ad9 rdf:first N08111664b9e84d83bed540891d73c4c1
112 rdf:rest rdf:nil
113 N93787125bed74079bf0c1f2f5ae1ac37 schema:name dimensions_id
114 schema:value pub.1090661968
115 rdf:type schema:PropertyValue
116 N945d2c7a98674363be246b016e961a95 rdf:first sg:person.01312676340.06
117 rdf:rest Nbc5d5f23c0764b0f89bfc246d3fb6a9a
118 N9b30b7d7dfd9453b9817aeab340ae550 rdf:first sg:person.012366760067.46
119 rdf:rest N945d2c7a98674363be246b016e961a95
120 Nad54248c2c964aea8a0335baa5850fae schema:familyName Lu
121 schema:givenName Le
122 rdf:type schema:Person
123 Nb3e5e4ad99ed4c5bb0c49112c74ac008 schema:isbn 978-3-319-42998-4
124 978-3-319-42999-1
125 schema:name Deep Learning and Convolutional Neural Networks for Medical Image Computing
126 rdf:type schema:Book
127 Nbb7d96cb8b1b45079e34a1026412a885 schema:name doi
128 schema:value 10.1007/978-3-319-42999-1_8
129 rdf:type schema:PropertyValue
130 Nbc5d5f23c0764b0f89bfc246d3fb6a9a rdf:first sg:person.011331054577.30
131 rdf:rest rdf:nil
132 Nc0d60391bb144612b61ec90a61e39d14 schema:familyName Carneiro
133 schema:givenName Gustavo
134 rdf:type schema:Person
135 Nc509c3c10fe2483fad15faedd4e59443 rdf:first sg:person.0705635036.05
136 rdf:rest N5858ac2ea4c34dda8c711b4bc060af79
137 Nc5d4bf0a9d554b9db1db8b2f2af77ecf rdf:first sg:person.01222313370.49
138 rdf:rest N73b9e030c3bf40ac83a20a3c38962fbc
139 Nf3c24e395be3487a896663b65b8c3fff schema:name readcube_id
140 schema:value 36e4148e8fe70f24dbe818c8567f15b17a3ceccfe92a168ee29d117b671bcf87
141 rdf:type schema:PropertyValue
142 Nff98cd200cfd4d7f8925c7ade7afacea schema:name Springer Nature - SN SciGraph project
143 rdf:type schema:Organization
144 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
145 schema:name Information and Computing Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
148 schema:name Artificial Intelligence and Image Processing
149 rdf:type schema:DefinedTerm
150 sg:person.011331054577.30 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
151 schema:familyName Summers
152 schema:givenName Ronald M.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
154 rdf:type schema:Person
155 sg:person.01154165623.33 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
156 schema:familyName Shin
157 schema:givenName Hoo-Chang
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154165623.33
159 rdf:type schema:Person
160 sg:person.01222313370.49 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
161 schema:familyName Gao
162 schema:givenName Mingchen
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222313370.49
164 rdf:type schema:Person
165 sg:person.012366760067.46 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
166 schema:familyName Yao
167 schema:givenName Jianhua
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46
169 rdf:type schema:Person
170 sg:person.01312676340.06 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
171 schema:familyName Mollura
172 schema:givenName Daniel
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312676340.06
174 rdf:type schema:Person
175 sg:person.01331447262.96 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
176 schema:familyName Roth
177 schema:givenName Holger R.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96
179 rdf:type schema:Person
180 sg:person.01353423536.73 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
181 schema:familyName Lu
182 schema:givenName Le
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353423536.73
184 rdf:type schema:Person
185 sg:person.0705635036.05 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
186 schema:familyName Xu
187 schema:givenName Ziyue
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705635036.05
189 rdf:type schema:Person
190 sg:person.07400503505.29 schema:affiliation https://www.grid.ac/institutes/grid.410305.3
191 schema:familyName Nogues
192 schema:givenName Isabella
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07400503505.29
194 rdf:type schema:Person
195 sg:pub.10.1007/978-3-319-05530-5_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030844824
196 https://doi.org/10.1007/978-3-319-05530-5_16
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/978-3-319-10404-1_68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044639080
199 https://doi.org/10.1007/978-3-319-10404-1_68
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/978-3-319-10443-0_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018633844
202 https://doi.org/10.1007/978-3-319-10443-0_39
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/978-3-319-10584-0_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024540204
205 https://doi.org/10.1007/978-3-319-10584-0_23
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/978-3-319-10590-1_53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032233097
208 https://doi.org/10.1007/978-3-319-10590-1_53
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/978-3-319-13972-2_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046521486
211 https://doi.org/10.1007/978-3-319-13972-2_8
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/978-3-319-14104-6_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089704381
214 https://doi.org/10.1007/978-3-319-14104-6_16
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/978-3-319-19992-4_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009611012
217 https://doi.org/10.1007/978-3-319-19992-4_46
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/978-3-319-24553-9_62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000157973
220 https://doi.org/10.1007/978-3-319-24553-9_62
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/978-3-319-24553-9_68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034209570
223 https://doi.org/10.1007/978-3-319-24553-9_68
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/978-3-319-24553-9_72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037469380
226 https://doi.org/10.1007/978-3-319-24553-9_72
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/978-3-319-24571-3_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034760966
229 https://doi.org/10.1007/978-3-319-24571-3_8
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/978-3-319-24574-4_78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014954904
232 https://doi.org/10.1007/978-3-319-24574-4_78
233 rdf:type schema:CreativeWork
234 sg:pub.10.1007/978-3-642-40763-5_51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014968475
235 https://doi.org/10.1007/978-3-642-40763-5_51
236 rdf:type schema:CreativeWork
237 sg:pub.10.1007/s11263-014-0733-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017073734
238 https://doi.org/10.1007/s11263-014-0733-5
239 rdf:type schema:CreativeWork
240 sg:pub.10.1007/s11263-014-0777-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042985411
241 https://doi.org/10.1007/s11263-014-0777-6
242 rdf:type schema:CreativeWork
243 sg:pub.10.1007/s11263-015-0816-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009767488
244 https://doi.org/10.1007/s11263-015-0816-y
245 rdf:type schema:CreativeWork
246 sg:pub.10.1023/b:visi.0000029664.99615.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687286
247 https://doi.org/10.1023/b:visi.0000029664.99615.94
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/j.compmedimag.2011.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038124924
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.media.2011.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005034623
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.media.2012.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011379533
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.media.2015.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023638731
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.neuroimage.2014.12.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031059013
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1080/21681163.2015.1124249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005532781
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1109/5.726791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179979
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1109/72.279181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218416
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1109/cvpr.2005.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093997066
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1109/cvpr.2008.4587633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093176609
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1109/cvpr.2009.5206848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095689025
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1109/cvpr.2011.5995359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093533787
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1109/cvpr.2014.222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094012327
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1109/cvpr.2015.7298594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094291017
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1109/cvpr.2015.7298643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093985706
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1109/cvpr.2015.7298668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093337962
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1109/cvpr.2015.7298712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095714739
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1109/cvpr.2015.7298959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094935897
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1109/cvprw.2014.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093645378
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1109/embc.2015.7318458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079204946
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1109/icarcv.2014.7064414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094981103
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1109/isbi.2015.7163869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095379264
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1109/isbi.2015.7163871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094395518
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1109/isbi.2016.7493497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094994570
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1109/tmi.2011.2168234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695796
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1109/tmi.2013.2241448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696054
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1109/tmi.2014.2377694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696449
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1109/tmi.2015.2393954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696475
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1109/tmi.2015.2482920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696607
306 rdf:type schema:CreativeWork
307 https://doi.org/10.1109/tpami.2012.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744255
308 rdf:type schema:CreativeWork
309 https://doi.org/10.1109/tpami.2012.231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003742061
310 rdf:type schema:CreativeWork
311 https://doi.org/10.1109/tpami.2013.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744613
312 rdf:type schema:CreativeWork
313 https://doi.org/10.1109/tpami.2015.2389824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744812
314 rdf:type schema:CreativeWork
315 https://doi.org/10.1109/tpami.2015.2437384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744880
316 rdf:type schema:CreativeWork
317 https://doi.org/10.1142/s0218488598000094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062977837
318 rdf:type schema:CreativeWork
319 https://doi.org/10.1145/2063576.2064004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009824444
320 rdf:type schema:CreativeWork
321 https://doi.org/10.1145/219717.219748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005662680
322 rdf:type schema:CreativeWork
323 https://doi.org/10.1145/2647868.2654889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052031051
324 rdf:type schema:CreativeWork
325 https://doi.org/10.1145/3065386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085642448
326 rdf:type schema:CreativeWork
327 https://doi.org/10.1162/neco.2006.18.7.1527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004707137
328 rdf:type schema:CreativeWork
329 https://doi.org/10.5244/c.25.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099341617
330 rdf:type schema:CreativeWork
331 https://doi.org/10.5244/c.26.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099383250
332 rdf:type schema:CreativeWork
333 https://doi.org/10.5244/c.28.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099426737
334 rdf:type schema:CreativeWork
335 https://www.grid.ac/institutes/grid.410305.3 schema:alternateName National Institutes of Health Clinical Center
336 schema:name National Institutes of Health Clinical Center
337 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...