2016-07-30
AUTHORSF. Marta L. Di Lascio , Fabrizio Durante , Piotr Jaworski
ABSTRACTA test is proposed to check whether a randomsample comes from a truncation invariant copula C, that is, if C is the copula of a pair (U, V) of random variables uniformly distributed on [0, 1], then C is also the copula of the conditional distribution function of (U,V∣U≤α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(U,V\mid U\le \alpha )$$\end{document} for every α∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1]$$\end{document}. The asymptotic normality of the test statistics is shown. Moreover, a procedure is described to simplify the approximation of the asymptotic variance of the test. Its performance is investigated in a simulation study. More... »
PAGES173-180
Soft Methods for Data Science
ISBN
978-3-319-42971-7
978-3-319-42972-4
http://scigraph.springernature.com/pub.10.1007/978-3-319-42972-4_22
DOIhttp://dx.doi.org/10.1007/978-3-319-42972-4_22
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1037577865
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Free University of Bozen-Bolzano, Bolzano, Italy",
"id": "http://www.grid.ac/institutes/grid.34988.3e",
"name": [
"Free University of Bozen-Bolzano, Bolzano, Italy"
],
"type": "Organization"
},
"familyName": "Di Lascio",
"givenName": "F. Marta L.",
"id": "sg:person.016273330547.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273330547.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Free University of Bozen-Bolzano, Bolzano, Italy",
"id": "http://www.grid.ac/institutes/grid.34988.3e",
"name": [
"Free University of Bozen-Bolzano, Bolzano, Italy"
],
"type": "Organization"
},
"familyName": "Durante",
"givenName": "Fabrizio",
"id": "sg:person.013475607471.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013475607471.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Warsaw, Warsaw, Poland",
"id": "http://www.grid.ac/institutes/grid.12847.38",
"name": [
"University of Warsaw, Warsaw, Poland"
],
"type": "Organization"
},
"familyName": "Jaworski",
"givenName": "Piotr",
"id": "sg:person.016545326731.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016545326731.91"
],
"type": "Person"
}
],
"datePublished": "2016-07-30",
"datePublishedReg": "2016-07-30",
"description": "A test is proposed to check whether a randomsample comes from a truncation invariant copula C, that is, if C is the copula of a pair (U,\u00a0V) of random variables uniformly distributed on [0,\u00a01], then C is also the copula of the conditional distribution function of (U,V\u2223U\u2264\u03b1)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(U,V\\mid U\\le \\alpha )$$\\end{document} for every \u03b1\u2208(0,1]\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha \\in (0,1]$$\\end{document}. The asymptotic normality of the test statistics is shown. Moreover, a procedure is described to simplify the approximation of the asymptotic variance of the test. Its performance is investigated in a simulation study.",
"editor": [
{
"familyName": "Ferraro",
"givenName": "Maria Brigida",
"type": "Person"
},
{
"familyName": "Giordani",
"givenName": "Paolo",
"type": "Person"
},
{
"familyName": "Vantaggi",
"givenName": "Barbara",
"type": "Person"
},
{
"familyName": "Gagolewski",
"givenName": "Marek",
"type": "Person"
},
{
"familyName": "\u00c1ngeles Gil",
"givenName": "Mar\u00eda",
"type": "Person"
},
{
"familyName": "Grzegorzewski",
"givenName": "Przemys\u0142aw",
"type": "Person"
},
{
"familyName": "Hryniewicz",
"givenName": "Olgierd",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-42972-4_22",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-42971-7",
"978-3-319-42972-4"
],
"name": "Soft Methods for Data Science",
"type": "Book"
},
"keywords": [
"test",
"study",
"procedure",
"function",
"randomsample",
"variables",
"variance",
"statistics",
"normality",
"pairs",
"performance",
"dependence",
"test statistic",
"simulation study",
"conditional distribution function",
"asymptotic variance",
"copula",
"random variables",
"asymptotic normality",
"distribution function",
"approximation",
"copula C",
"invariant dependence"
],
"name": "A Test for Truncation Invariant Dependence",
"pagination": "173-180",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1037577865"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-42972-4_22"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-42972-4_22",
"https://app.dimensions.ai/details/publication/pub.1037577865"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:46",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_325.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-42972-4_22"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42972-4_22'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42972-4_22'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42972-4_22'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42972-4_22'
This table displays all metadata directly associated to this object as RDF triples.
130 TRIPLES
23 PREDICATES
48 URIs
41 LITERALS
7 BLANK NODES