A Relaxed K-SVD Algorithm for Spontaneous Micro-Expression Recognition View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Hao Zheng , Xin Geng , Zhongxue Yang

ABSTRACT

Micro-expression recognition has been a challenging problem in computer vision due to its subtlety, which are often hard to be concealed. In the paper, a relaxed K-SVD algorithm (RK-SVD) to learn sparse dictionary for spontaneous micro-expression recognition is proposed. In RK-SVD, the reconstruction error and the classification error are considered, while the variance of sparse coefficients is minimized to address the similarity of same classes and the distinctiveness of different classes. The optimization is implemented by the K-SVD algorithm and stochastic gradient descent algorithm. Finally a single overcomplete dictionary and an optimal linear classifier are learned simultaneously. Experimental results on two spontaneous micro-expression databases, namely CASME and CASME II, show that the performance of the new proposed algorithm is superior to other state-of-the-art algorithms. More... »

PAGES

692-699

Book

TITLE

PRICAI 2016: Trends in Artificial Intelligence

ISBN

978-3-319-42910-6
978-3-319-42911-3

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-42911-3_58

DOI

http://dx.doi.org/10.1007/978-3-319-42911-3_58

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020998409


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "Key Laboratory of Trusted Cloud Computing and Big Data Analysis, School of Information Engineering, Nanjing XiaoZhuang University", 
            "MOE Key Laboratory of Computer Network and Information Integration, School of Computer Science and Engineering, Southeast University", 
            "State Key Laboratory for Novel Software Technology, Nanjing University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Hao", 
        "id": "sg:person.07575706553.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07575706553.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "MOE Key Laboratory of Computer Network and Information Integration, School of Computer Science and Engineering, Southeast University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geng", 
        "givenName": "Xin", 
        "id": "sg:person.01160220403.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160220403.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Xiaozhuang University", 
          "id": "https://www.grid.ac/institutes/grid.440845.9", 
          "name": [
            "Key Laboratory of Trusted Cloud Computing and Big Data Analysis, School of Information Engineering, Nanjing XiaoZhuang University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zhongxue", 
        "id": "sg:person.010511743517.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511743517.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1371/journal.pone.0124674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004927682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0086041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019130908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-013-9288-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039212297", 
          "https://doi.org/10.1007/s11063-013-9288-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2011.156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5539989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093573977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fg.2013.6553717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093703072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094512974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095217123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ic.2009.0244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098726038"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Micro-expression recognition has been a challenging problem in computer vision due to its subtlety, which are often hard to be concealed. In the paper, a relaxed K-SVD algorithm (RK-SVD) to learn sparse dictionary for spontaneous micro-expression recognition is proposed. In RK-SVD, the reconstruction error and the classification error are considered, while the variance of sparse coefficients is minimized to address the similarity of same classes and the distinctiveness of different classes. The optimization is implemented by the K-SVD algorithm and stochastic gradient descent algorithm. Finally a single overcomplete dictionary and an optimal linear classifier are learned simultaneously. Experimental results on two spontaneous micro-expression databases, namely CASME and CASME II, show that the performance of the new proposed algorithm is superior to other state-of-the-art algorithms.", 
    "editor": [
      {
        "familyName": "Booth", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhang", 
        "givenName": "Min-Ling", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-42911-3_58", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7181075", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-42910-6", 
        "978-3-319-42911-3"
      ], 
      "name": "PRICAI 2016: Trends in Artificial Intelligence", 
      "type": "Book"
    }, 
    "name": "A Relaxed K-SVD Algorithm for Spontaneous Micro-Expression Recognition", 
    "pagination": "692-699", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-42911-3_58"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "640c8ab0e4b80491053e98f8b9bc7f193988af0dda7b6147d3a44c94c48ce1d9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020998409"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-42911-3_58", 
      "https://app.dimensions.ai/details/publication/pub.1020998409"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000256.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-42911-3_58"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42911-3_58'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42911-3_58'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42911-3_58'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42911-3_58'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-42911-3_58 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nedb4ef60e0e44303b0022c03725f056b
4 schema:citation sg:pub.10.1007/s11063-013-9288-7
5 https://doi.org/10.1049/ic.2009.0244
6 https://doi.org/10.1109/cvpr.2009.5206821
7 https://doi.org/10.1109/cvpr.2010.5539989
8 https://doi.org/10.1109/fg.2013.6553717
9 https://doi.org/10.1109/iccv.2011.6126401
10 https://doi.org/10.1109/tpami.2011.156
11 https://doi.org/10.1371/journal.pone.0086041
12 https://doi.org/10.1371/journal.pone.0124674
13 schema:datePublished 2016
14 schema:datePublishedReg 2016-01-01
15 schema:description Micro-expression recognition has been a challenging problem in computer vision due to its subtlety, which are often hard to be concealed. In the paper, a relaxed K-SVD algorithm (RK-SVD) to learn sparse dictionary for spontaneous micro-expression recognition is proposed. In RK-SVD, the reconstruction error and the classification error are considered, while the variance of sparse coefficients is minimized to address the similarity of same classes and the distinctiveness of different classes. The optimization is implemented by the K-SVD algorithm and stochastic gradient descent algorithm. Finally a single overcomplete dictionary and an optimal linear classifier are learned simultaneously. Experimental results on two spontaneous micro-expression databases, namely CASME and CASME II, show that the performance of the new proposed algorithm is superior to other state-of-the-art algorithms.
16 schema:editor N9b9f53dd0d1b496991eed58d5a50fa5c
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nf38703be90094473bf0e76147ecf3f1d
21 schema:name A Relaxed K-SVD Algorithm for Spontaneous Micro-Expression Recognition
22 schema:pagination 692-699
23 schema:productId N04a087218ca84e328e9931407a644bc9
24 N1d801129687141d1a22885ec2056ae82
25 N8348375899d544a988e276a3cc5688c7
26 schema:publisher Ndd73327358754358a8c66b2ca0bc349b
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020998409
28 https://doi.org/10.1007/978-3-319-42911-3_58
29 schema:sdDatePublished 2019-04-15T23:51
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N4dcc8b5448fb4636a0729cea9a26b36f
32 schema:url http://link.springer.com/10.1007/978-3-319-42911-3_58
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N04a087218ca84e328e9931407a644bc9 schema:name dimensions_id
37 schema:value pub.1020998409
38 rdf:type schema:PropertyValue
39 N0ce463afaf734daf95c99bc0f87a56bc schema:name MOE Key Laboratory of Computer Network and Information Integration, School of Computer Science and Engineering, Southeast University
40 rdf:type schema:Organization
41 N1d801129687141d1a22885ec2056ae82 schema:name readcube_id
42 schema:value 640c8ab0e4b80491053e98f8b9bc7f193988af0dda7b6147d3a44c94c48ce1d9
43 rdf:type schema:PropertyValue
44 N48962ecb82ac4645bc4b9139af345fb6 rdf:first sg:person.010511743517.55
45 rdf:rest rdf:nil
46 N4dcc8b5448fb4636a0729cea9a26b36f schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N59af5ca42ac449cc80bb48167cd6ce2a rdf:first N946e71d479524c0dba526ac6fed68004
49 rdf:rest rdf:nil
50 N72234d1e5c494d46b137e89a6f9e4505 rdf:first sg:person.01160220403.92
51 rdf:rest N48962ecb82ac4645bc4b9139af345fb6
52 N8348375899d544a988e276a3cc5688c7 schema:name doi
53 schema:value 10.1007/978-3-319-42911-3_58
54 rdf:type schema:PropertyValue
55 N946e71d479524c0dba526ac6fed68004 schema:familyName Zhang
56 schema:givenName Min-Ling
57 rdf:type schema:Person
58 N9b9f53dd0d1b496991eed58d5a50fa5c rdf:first Ndb2d524425034d339a352c2aba77d1cd
59 rdf:rest N59af5ca42ac449cc80bb48167cd6ce2a
60 Ndb2d524425034d339a352c2aba77d1cd schema:familyName Booth
61 schema:givenName Richard
62 rdf:type schema:Person
63 Ndd73327358754358a8c66b2ca0bc349b schema:location Cham
64 schema:name Springer International Publishing
65 rdf:type schema:Organisation
66 Nedb4ef60e0e44303b0022c03725f056b rdf:first sg:person.07575706553.15
67 rdf:rest N72234d1e5c494d46b137e89a6f9e4505
68 Nf38703be90094473bf0e76147ecf3f1d schema:isbn 978-3-319-42910-6
69 978-3-319-42911-3
70 schema:name PRICAI 2016: Trends in Artificial Intelligence
71 rdf:type schema:Book
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 sg:grant.7181075 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-42911-3_58
79 rdf:type schema:MonetaryGrant
80 sg:person.010511743517.55 schema:affiliation https://www.grid.ac/institutes/grid.440845.9
81 schema:familyName Yang
82 schema:givenName Zhongxue
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010511743517.55
84 rdf:type schema:Person
85 sg:person.01160220403.92 schema:affiliation N0ce463afaf734daf95c99bc0f87a56bc
86 schema:familyName Geng
87 schema:givenName Xin
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160220403.92
89 rdf:type schema:Person
90 sg:person.07575706553.15 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
91 schema:familyName Zheng
92 schema:givenName Hao
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07575706553.15
94 rdf:type schema:Person
95 sg:pub.10.1007/s11063-013-9288-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039212297
96 https://doi.org/10.1007/s11063-013-9288-7
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1049/ic.2009.0244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098726038
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1109/cvpr.2009.5206821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095217123
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1109/cvpr.2010.5539989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093573977
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1109/fg.2013.6553717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093703072
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/iccv.2011.6126401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094512974
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/tpami.2011.156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744050
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1371/journal.pone.0086041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019130908
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1371/journal.pone.0124674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004927682
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.41156.37 schema:alternateName Nanjing University
115 schema:name Key Laboratory of Trusted Cloud Computing and Big Data Analysis, School of Information Engineering, Nanjing XiaoZhuang University
116 MOE Key Laboratory of Computer Network and Information Integration, School of Computer Science and Engineering, Southeast University
117 State Key Laboratory for Novel Software Technology, Nanjing University
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.440845.9 schema:alternateName Nanjing Xiaozhuang University
120 schema:name Key Laboratory of Trusted Cloud Computing and Big Data Analysis, School of Information Engineering, Nanjing XiaoZhuang University
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...