Integrating IoT and Fog Computing for Healthcare Service Delivery View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-09-24

AUTHORS

Foteini Andriopoulou , Tasos Dagiuklas , Theofanis Orphanoudakis

ABSTRACT

Internet of Things (IoT) technologies provide many opportunities for providing healthcare applications such as home based assisted living and well-being application solutions. Nowadays, numerous IoT devices are used to monitor users’ healthcare status and transmit the data directly to remote data centers through the cloud computing paradigm. This direct interconnection of the large amount of devices for remote storage, processing, and retrieval of medical records in the cloud demands a reliable network connection imposing many challenges related to network connectivity and traffic. This chapter deals with the transfer of the computing intelligence from cloud to the edge network. Fog computing operates closer to the user, on network edge, enabling accurate service delivery with low response time avoiding delays and network failures that may interrupt or delay the decision process and healthcare service delivery. An architectural model is proposed and a set of use cases illustrate the benefits of the IoT and fog computing integration. More... »

PAGES

213-232

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-42304-3_11

DOI

http://dx.doi.org/10.1007/978-3-319-42304-3_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084903976


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hellenic Open University, 26335, Patras, Greece", 
          "id": "http://www.grid.ac/institutes/grid.55939.33", 
          "name": [
            "Hellenic Open University, 26335, Patras, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andriopoulou", 
        "givenName": "Foteini", 
        "id": "sg:person.01333133104.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333133104.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Computer Science and Informatics London South Bank University, 103 Borough Road, SE1 0AA, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.4756.0", 
          "name": [
            "Division of Computer Science and Informatics London South Bank University, 103 Borough Road, SE1 0AA, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dagiuklas", 
        "givenName": "Tasos", 
        "id": "sg:person.013724335035.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013724335035.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hellenic Open University, 26335, Patras, Greece", 
          "id": "http://www.grid.ac/institutes/grid.55939.33", 
          "name": [
            "Hellenic Open University, 26335, Patras, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orphanoudakis", 
        "givenName": "Theofanis", 
        "id": "sg:person.015727537634.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015727537634.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-09-24", 
    "datePublishedReg": "2016-09-24", 
    "description": "Internet of Things (IoT) technologies provide many opportunities for providing healthcare applications such as home based assisted living and well-being application solutions. Nowadays, numerous IoT devices are used to monitor users\u2019 healthcare status and transmit the data directly to remote data centers through the cloud computing paradigm. This direct interconnection of the large amount of devices for remote storage, processing, and retrieval of medical records in the cloud demands a reliable network connection imposing many challenges related to network connectivity and traffic. This chapter deals with the transfer of the computing intelligence from cloud to the edge network. Fog computing operates closer to the user, on network edge, enabling accurate service delivery with low response time avoiding delays and network failures that may interrupt or delay the decision process and healthcare service delivery. An architectural model is proposed and a set of use cases illustrate the benefits of the IoT and fog computing integration.", 
    "editor": [
      {
        "familyName": "Keramidas", 
        "givenName": "Georgios", 
        "type": "Person"
      }, 
      {
        "familyName": "Voros", 
        "givenName": "Nikolaos", 
        "type": "Person"
      }, 
      {
        "familyName": "H\u00fcbner", 
        "givenName": "Michael", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-42304-3_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-42302-9", 
        "978-3-319-42304-3"
      ], 
      "name": "Components and Services for IoT Platforms", 
      "type": "Book"
    }, 
    "keywords": [
      "fog computing", 
      "numerous IoT devices", 
      "cloud computing paradigm", 
      "remote data centers", 
      "reliable network connection", 
      "healthcare service delivery", 
      "low response time", 
      "computing paradigm", 
      "Things (IoT) technology", 
      "IoT devices", 
      "edge networks", 
      "network edge", 
      "use cases", 
      "remote storage", 
      "architectural model", 
      "healthcare applications", 
      "data centers", 
      "application solutions", 
      "network failures", 
      "network connections", 
      "Assisted Living", 
      "network connectivity", 
      "IoT", 
      "computing", 
      "decision process", 
      "users", 
      "response time", 
      "cloud", 
      "direct interconnection", 
      "large amount", 
      "healthcare status", 
      "service delivery", 
      "Internet", 
      "intelligence", 
      "retrieval", 
      "traffic", 
      "network", 
      "devices", 
      "technology", 
      "paradigm", 
      "connectivity", 
      "processing", 
      "set", 
      "integration", 
      "applications", 
      "interconnection", 
      "challenges", 
      "delay", 
      "storage", 
      "solution", 
      "edge", 
      "model", 
      "connection", 
      "data", 
      "benefits", 
      "opportunities", 
      "delivery", 
      "process", 
      "time", 
      "medical records", 
      "home", 
      "amount", 
      "chapter", 
      "records", 
      "center", 
      "living", 
      "cases", 
      "failure", 
      "transfer", 
      "status", 
      "accurate service delivery", 
      "fog computing integration", 
      "computing integration"
    ], 
    "name": "Integrating IoT and Fog Computing for Healthcare Service Delivery", 
    "pagination": "213-232", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084903976"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-42304-3_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-42304-3_11", 
      "https://app.dimensions.ai/details/publication/pub.1084903976"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_59.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-42304-3_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42304-3_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42304-3_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42304-3_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42304-3_11'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      23 PREDICATES      100 URIs      90 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-42304-3_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 anzsrc-for:10
5 anzsrc-for:1005
6 schema:author N0e6e4200004b4d00a35eb14242327a55
7 schema:datePublished 2016-09-24
8 schema:datePublishedReg 2016-09-24
9 schema:description Internet of Things (IoT) technologies provide many opportunities for providing healthcare applications such as home based assisted living and well-being application solutions. Nowadays, numerous IoT devices are used to monitor users’ healthcare status and transmit the data directly to remote data centers through the cloud computing paradigm. This direct interconnection of the large amount of devices for remote storage, processing, and retrieval of medical records in the cloud demands a reliable network connection imposing many challenges related to network connectivity and traffic. This chapter deals with the transfer of the computing intelligence from cloud to the edge network. Fog computing operates closer to the user, on network edge, enabling accurate service delivery with low response time avoiding delays and network failures that may interrupt or delay the decision process and healthcare service delivery. An architectural model is proposed and a set of use cases illustrate the benefits of the IoT and fog computing integration.
10 schema:editor N9e5c5d9b45e241609aef5c44a422b025
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Na63e2003cdd84f749ecae2cfdbdf32ef
15 schema:keywords Assisted Living
16 Internet
17 IoT
18 IoT devices
19 Things (IoT) technology
20 accurate service delivery
21 amount
22 application solutions
23 applications
24 architectural model
25 benefits
26 cases
27 center
28 challenges
29 chapter
30 cloud
31 cloud computing paradigm
32 computing
33 computing integration
34 computing paradigm
35 connection
36 connectivity
37 data
38 data centers
39 decision process
40 delay
41 delivery
42 devices
43 direct interconnection
44 edge
45 edge networks
46 failure
47 fog computing
48 fog computing integration
49 healthcare applications
50 healthcare service delivery
51 healthcare status
52 home
53 integration
54 intelligence
55 interconnection
56 large amount
57 living
58 low response time
59 medical records
60 model
61 network
62 network connections
63 network connectivity
64 network edge
65 network failures
66 numerous IoT devices
67 opportunities
68 paradigm
69 process
70 processing
71 records
72 reliable network connection
73 remote data centers
74 remote storage
75 response time
76 retrieval
77 service delivery
78 set
79 solution
80 status
81 storage
82 technology
83 time
84 traffic
85 transfer
86 use cases
87 users
88 schema:name Integrating IoT and Fog Computing for Healthcare Service Delivery
89 schema:pagination 213-232
90 schema:productId N32c4b3484182427f9a271e6fba22a20c
91 N4ba5b86f35724477ba41f801675bb195
92 schema:publisher N908a45f2bef24dd990b4208cab41765a
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084903976
94 https://doi.org/10.1007/978-3-319-42304-3_11
95 schema:sdDatePublished 2021-12-01T20:11
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N894d72a0d01645f2999cc6547c5d582b
98 schema:url https://doi.org/10.1007/978-3-319-42304-3_11
99 sgo:license sg:explorer/license/
100 sgo:sdDataset chapters
101 rdf:type schema:Chapter
102 N04f22106da8544749415538e08f4ad5b schema:familyName Hübner
103 schema:givenName Michael
104 rdf:type schema:Person
105 N09d02d90d18547d9a1614db5d7beb0e3 schema:familyName Keramidas
106 schema:givenName Georgios
107 rdf:type schema:Person
108 N0e6e4200004b4d00a35eb14242327a55 rdf:first sg:person.01333133104.34
109 rdf:rest N6d3605e81e144aa7898b139d2ffd339d
110 N32c4b3484182427f9a271e6fba22a20c schema:name dimensions_id
111 schema:value pub.1084903976
112 rdf:type schema:PropertyValue
113 N4925c7e71686430293010054a1fb5666 schema:familyName Voros
114 schema:givenName Nikolaos
115 rdf:type schema:Person
116 N4ba5b86f35724477ba41f801675bb195 schema:name doi
117 schema:value 10.1007/978-3-319-42304-3_11
118 rdf:type schema:PropertyValue
119 N55a490515d6c465f86af7f757848cb6f rdf:first N4925c7e71686430293010054a1fb5666
120 rdf:rest N7e70f77f29494b009a7cc9fdf9001cf6
121 N6d3605e81e144aa7898b139d2ffd339d rdf:first sg:person.013724335035.39
122 rdf:rest Ncb81f597afa3410ea55c91c1d4c9cc61
123 N7e70f77f29494b009a7cc9fdf9001cf6 rdf:first N04f22106da8544749415538e08f4ad5b
124 rdf:rest rdf:nil
125 N894d72a0d01645f2999cc6547c5d582b schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 N908a45f2bef24dd990b4208cab41765a schema:name Springer Nature
128 rdf:type schema:Organisation
129 N9e5c5d9b45e241609aef5c44a422b025 rdf:first N09d02d90d18547d9a1614db5d7beb0e3
130 rdf:rest N55a490515d6c465f86af7f757848cb6f
131 Na63e2003cdd84f749ecae2cfdbdf32ef schema:isbn 978-3-319-42302-9
132 978-3-319-42304-3
133 schema:name Components and Services for IoT Platforms
134 rdf:type schema:Book
135 Ncb81f597afa3410ea55c91c1d4c9cc61 rdf:first sg:person.015727537634.22
136 rdf:rest rdf:nil
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
141 schema:name Artificial Intelligence and Image Processing
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
144 schema:name Information Systems
145 rdf:type schema:DefinedTerm
146 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
147 schema:name Technology
148 rdf:type schema:DefinedTerm
149 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
150 schema:name Communications Technologies
151 rdf:type schema:DefinedTerm
152 sg:person.01333133104.34 schema:affiliation grid-institutes:grid.55939.33
153 schema:familyName Andriopoulou
154 schema:givenName Foteini
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333133104.34
156 rdf:type schema:Person
157 sg:person.013724335035.39 schema:affiliation grid-institutes:grid.4756.0
158 schema:familyName Dagiuklas
159 schema:givenName Tasos
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013724335035.39
161 rdf:type schema:Person
162 sg:person.015727537634.22 schema:affiliation grid-institutes:grid.55939.33
163 schema:familyName Orphanoudakis
164 schema:givenName Theofanis
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015727537634.22
166 rdf:type schema:Person
167 grid-institutes:grid.4756.0 schema:alternateName Division of Computer Science and Informatics London South Bank University, 103 Borough Road, SE1 0AA, London, UK
168 schema:name Division of Computer Science and Informatics London South Bank University, 103 Borough Road, SE1 0AA, London, UK
169 rdf:type schema:Organization
170 grid-institutes:grid.55939.33 schema:alternateName Hellenic Open University, 26335, Patras, Greece
171 schema:name Hellenic Open University, 26335, Patras, Greece
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...