Integrating IoT and Fog Computing for Healthcare Service Delivery View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-09-24

AUTHORS

Foteini Andriopoulou , Tasos Dagiuklas , Theofanis Orphanoudakis

ABSTRACT

Internet of Things (IoT) technologies provide many opportunities for providing healthcare applications such as home based assisted living and well-being application solutions. Nowadays, numerous IoT devices are used to monitor users’ healthcare status and transmit the data directly to remote data centers through the cloud computing paradigm. This direct interconnection of the large amount of devices for remote storage, processing, and retrieval of medical records in the cloud demands a reliable network connection imposing many challenges related to network connectivity and traffic. This chapter deals with the transfer of the computing intelligence from cloud to the edge network. Fog computing operates closer to the user, on network edge, enabling accurate service delivery with low response time avoiding delays and network failures that may interrupt or delay the decision process and healthcare service delivery. An architectural model is proposed and a set of use cases illustrate the benefits of the IoT and fog computing integration. More... »

PAGES

213-232

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-42304-3_11

DOI

http://dx.doi.org/10.1007/978-3-319-42304-3_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084903976


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hellenic Open University, 26335, Patras, Greece", 
          "id": "http://www.grid.ac/institutes/grid.55939.33", 
          "name": [
            "Hellenic Open University, 26335, Patras, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andriopoulou", 
        "givenName": "Foteini", 
        "id": "sg:person.01333133104.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333133104.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Computer Science and Informatics London South Bank University, 103 Borough Road, SE1 0AA, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.4756.0", 
          "name": [
            "Division of Computer Science and Informatics London South Bank University, 103 Borough Road, SE1 0AA, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dagiuklas", 
        "givenName": "Tasos", 
        "id": "sg:person.013724335035.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013724335035.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hellenic Open University, 26335, Patras, Greece", 
          "id": "http://www.grid.ac/institutes/grid.55939.33", 
          "name": [
            "Hellenic Open University, 26335, Patras, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orphanoudakis", 
        "givenName": "Theofanis", 
        "id": "sg:person.015727537634.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015727537634.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-09-24", 
    "datePublishedReg": "2016-09-24", 
    "description": "Internet of Things (IoT) technologies provide many opportunities for providing healthcare applications such as home based assisted living and well-being application solutions. Nowadays, numerous IoT devices are used to monitor users\u2019 healthcare status and transmit the data directly to remote data centers through the cloud computing paradigm. This direct interconnection of the large amount of devices for remote storage, processing, and retrieval of medical records in the cloud demands a reliable network connection imposing many challenges related to network connectivity and traffic. This chapter deals with the transfer of the computing intelligence from cloud to the edge network. Fog computing operates closer to the user, on network edge, enabling accurate service delivery with low response time avoiding delays and network failures that may interrupt or delay the decision process and healthcare service delivery. An architectural model is proposed and a set of use cases illustrate the benefits of the IoT and fog computing integration.", 
    "editor": [
      {
        "familyName": "Keramidas", 
        "givenName": "Georgios", 
        "type": "Person"
      }, 
      {
        "familyName": "Voros", 
        "givenName": "Nikolaos", 
        "type": "Person"
      }, 
      {
        "familyName": "H\u00fcbner", 
        "givenName": "Michael", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-42304-3_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-42302-9", 
        "978-3-319-42304-3"
      ], 
      "name": "Components and Services for IoT Platforms", 
      "type": "Book"
    }, 
    "keywords": [
      "fog computing", 
      "numerous IoT devices", 
      "cloud computing paradigm", 
      "remote data centers", 
      "reliable network connection", 
      "healthcare service delivery", 
      "low response time", 
      "computing paradigm", 
      "Things (IoT) technology", 
      "IoT devices", 
      "edge networks", 
      "network edge", 
      "use cases", 
      "remote storage", 
      "architectural model", 
      "healthcare applications", 
      "data centers", 
      "application solutions", 
      "network failures", 
      "network connections", 
      "Assisted Living", 
      "network connectivity", 
      "IoT", 
      "computing", 
      "decision process", 
      "users", 
      "response time", 
      "cloud", 
      "direct interconnection", 
      "large amount", 
      "healthcare status", 
      "service delivery", 
      "Internet", 
      "intelligence", 
      "retrieval", 
      "traffic", 
      "network", 
      "devices", 
      "technology", 
      "paradigm", 
      "connectivity", 
      "processing", 
      "set", 
      "integration", 
      "applications", 
      "interconnection", 
      "challenges", 
      "delay", 
      "storage", 
      "solution", 
      "edge", 
      "model", 
      "connection", 
      "data", 
      "benefits", 
      "opportunities", 
      "delivery", 
      "process", 
      "time", 
      "medical records", 
      "home", 
      "amount", 
      "chapter", 
      "records", 
      "center", 
      "living", 
      "cases", 
      "failure", 
      "transfer", 
      "status", 
      "accurate service delivery", 
      "fog computing integration", 
      "computing integration"
    ], 
    "name": "Integrating IoT and Fog Computing for Healthcare Service Delivery", 
    "pagination": "213-232", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084903976"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-42304-3_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-42304-3_11", 
      "https://app.dimensions.ai/details/publication/pub.1084903976"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_387.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-42304-3_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42304-3_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42304-3_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42304-3_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-42304-3_11'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      23 PREDICATES      100 URIs      90 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-42304-3_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 anzsrc-for:10
5 anzsrc-for:1005
6 schema:author Ncb559a9156ab4a62b79eb7f647e5ae2c
7 schema:datePublished 2016-09-24
8 schema:datePublishedReg 2016-09-24
9 schema:description Internet of Things (IoT) technologies provide many opportunities for providing healthcare applications such as home based assisted living and well-being application solutions. Nowadays, numerous IoT devices are used to monitor users’ healthcare status and transmit the data directly to remote data centers through the cloud computing paradigm. This direct interconnection of the large amount of devices for remote storage, processing, and retrieval of medical records in the cloud demands a reliable network connection imposing many challenges related to network connectivity and traffic. This chapter deals with the transfer of the computing intelligence from cloud to the edge network. Fog computing operates closer to the user, on network edge, enabling accurate service delivery with low response time avoiding delays and network failures that may interrupt or delay the decision process and healthcare service delivery. An architectural model is proposed and a set of use cases illustrate the benefits of the IoT and fog computing integration.
10 schema:editor Ne832a1aa44aa40acb26dfd2dbb452b25
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N904847fde0284aa98bb2286e9c7e5e70
15 schema:keywords Assisted Living
16 Internet
17 IoT
18 IoT devices
19 Things (IoT) technology
20 accurate service delivery
21 amount
22 application solutions
23 applications
24 architectural model
25 benefits
26 cases
27 center
28 challenges
29 chapter
30 cloud
31 cloud computing paradigm
32 computing
33 computing integration
34 computing paradigm
35 connection
36 connectivity
37 data
38 data centers
39 decision process
40 delay
41 delivery
42 devices
43 direct interconnection
44 edge
45 edge networks
46 failure
47 fog computing
48 fog computing integration
49 healthcare applications
50 healthcare service delivery
51 healthcare status
52 home
53 integration
54 intelligence
55 interconnection
56 large amount
57 living
58 low response time
59 medical records
60 model
61 network
62 network connections
63 network connectivity
64 network edge
65 network failures
66 numerous IoT devices
67 opportunities
68 paradigm
69 process
70 processing
71 records
72 reliable network connection
73 remote data centers
74 remote storage
75 response time
76 retrieval
77 service delivery
78 set
79 solution
80 status
81 storage
82 technology
83 time
84 traffic
85 transfer
86 use cases
87 users
88 schema:name Integrating IoT and Fog Computing for Healthcare Service Delivery
89 schema:pagination 213-232
90 schema:productId N2c48607a9d784e47a731c1387c4d2f33
91 N6d286a31d1c341b9bda2e1f8af9c1d5a
92 schema:publisher Nf87059fc19954f87a1862d9ee926602c
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084903976
94 https://doi.org/10.1007/978-3-319-42304-3_11
95 schema:sdDatePublished 2022-01-01T19:22
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher Ndb39e3da18ab4c139da96def9f55fa6f
98 schema:url https://doi.org/10.1007/978-3-319-42304-3_11
99 sgo:license sg:explorer/license/
100 sgo:sdDataset chapters
101 rdf:type schema:Chapter
102 N19f1d97a9ad448e4bd7d906196d4c1ae rdf:first sg:person.015727537634.22
103 rdf:rest rdf:nil
104 N2c48607a9d784e47a731c1387c4d2f33 schema:name dimensions_id
105 schema:value pub.1084903976
106 rdf:type schema:PropertyValue
107 N68c9e9b642e6440480f4cbfedcd930c8 schema:familyName Voros
108 schema:givenName Nikolaos
109 rdf:type schema:Person
110 N6d286a31d1c341b9bda2e1f8af9c1d5a schema:name doi
111 schema:value 10.1007/978-3-319-42304-3_11
112 rdf:type schema:PropertyValue
113 N7b29a0d1a8d2490a93e8ce36406b58bc schema:familyName Hübner
114 schema:givenName Michael
115 rdf:type schema:Person
116 N904847fde0284aa98bb2286e9c7e5e70 schema:isbn 978-3-319-42302-9
117 978-3-319-42304-3
118 schema:name Components and Services for IoT Platforms
119 rdf:type schema:Book
120 N93a91382bdce4a0bb3914c4bc070dd33 rdf:first N7b29a0d1a8d2490a93e8ce36406b58bc
121 rdf:rest rdf:nil
122 Nb4880d81a8604044903178265d3ac515 schema:familyName Keramidas
123 schema:givenName Georgios
124 rdf:type schema:Person
125 Ncb559a9156ab4a62b79eb7f647e5ae2c rdf:first sg:person.01333133104.34
126 rdf:rest Ne3d03d2d76754c6da9e7ab441436ba26
127 Ndb39e3da18ab4c139da96def9f55fa6f schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 Ne3d03d2d76754c6da9e7ab441436ba26 rdf:first sg:person.013724335035.39
130 rdf:rest N19f1d97a9ad448e4bd7d906196d4c1ae
131 Ne832a1aa44aa40acb26dfd2dbb452b25 rdf:first Nb4880d81a8604044903178265d3ac515
132 rdf:rest Ne87e69949265458e9730c0341a8cfcb6
133 Ne87e69949265458e9730c0341a8cfcb6 rdf:first N68c9e9b642e6440480f4cbfedcd930c8
134 rdf:rest N93a91382bdce4a0bb3914c4bc070dd33
135 Nf87059fc19954f87a1862d9ee926602c schema:name Springer Nature
136 rdf:type schema:Organisation
137 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
138 schema:name Information and Computing Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
141 schema:name Artificial Intelligence and Image Processing
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
144 schema:name Information Systems
145 rdf:type schema:DefinedTerm
146 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
147 schema:name Technology
148 rdf:type schema:DefinedTerm
149 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
150 schema:name Communications Technologies
151 rdf:type schema:DefinedTerm
152 sg:person.01333133104.34 schema:affiliation grid-institutes:grid.55939.33
153 schema:familyName Andriopoulou
154 schema:givenName Foteini
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333133104.34
156 rdf:type schema:Person
157 sg:person.013724335035.39 schema:affiliation grid-institutes:grid.4756.0
158 schema:familyName Dagiuklas
159 schema:givenName Tasos
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013724335035.39
161 rdf:type schema:Person
162 sg:person.015727537634.22 schema:affiliation grid-institutes:grid.55939.33
163 schema:familyName Orphanoudakis
164 schema:givenName Theofanis
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015727537634.22
166 rdf:type schema:Person
167 grid-institutes:grid.4756.0 schema:alternateName Division of Computer Science and Informatics London South Bank University, 103 Borough Road, SE1 0AA, London, UK
168 schema:name Division of Computer Science and Informatics London South Bank University, 103 Borough Road, SE1 0AA, London, UK
169 rdf:type schema:Organization
170 grid-institutes:grid.55939.33 schema:alternateName Hellenic Open University, 26335, Patras, Greece
171 schema:name Hellenic Open University, 26335, Patras, Greece
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...