Multi-atlas Segmentation with Joint Label Fusion of Osteoporotic Vertebral Compression Fractures on CT View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016

AUTHORS

Yinong Wang , Jianhua Yao , Holger R. Roth , Joseph E. Burns , Ronald M. Summers

ABSTRACT

The precise and accurate segmentation of the vertebral column is essential in the diagnosis and treatment of various orthopedic, neurological, and oncological traumas and pathologies. Segmentation is especially challenging in the presence of pathology such as vertebral compression fractures. In this paper, we propose a method to produce segmentations for osteoporotic compression fractured vertebrae by applying a multi-atlas joint label fusion technique for clinical computed tomography (CT) images. A total of 170 thoracic and lumbar vertebrae were evaluated using atlases from five patients with varying degrees of spinal degeneration. In an osteoporotic cohort of bundled atlases, registration provided an average Dice coefficient and mean absolute surface distance of \(92.7\,{\pm }\,4.5\)% and \(0.32\,{\pm }\,0.13\) mm for osteoporotic vertebrae, respectively, and \(90.9\,{\pm }\,3.0\,\%\) and \(0.36\,{\pm }\,0.11\) mm for compression fractured vertebrae. More... »

PAGES

74-84

References to SciGraph publications

  • 2015. 3D Vertebra Segmentation by Feature Selection Active Shape Model in RECENT ADVANCES IN COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING
  • 2015. Report of Vertebra Segmentation Challenge in 2014 MICCAI Workshop on Computational Spine Imaging in RECENT ADVANCES IN COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING
  • 2015. Atlas-Based Registration for Accurate Segmentation of Thoracic and Lumbar Vertebrae in CT Data in RECENT ADVANCES IN COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING
  • Book

    TITLE

    Computational Methods and Clinical Applications for Spine Imaging

    ISBN

    978-3-319-41826-1
    978-3-319-41827-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-41827-8_7

    DOI

    http://dx.doi.org/10.1007/978-3-319-41827-8_7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019423124


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yinong", 
            "id": "sg:person.07562150665.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07562150665.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "id": "sg:person.012366760067.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roth", 
            "givenName": "Holger R.", 
            "id": "sg:person.01331447262.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiological Sciences, University of California, Irvine School of Medicine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Burns", 
            "givenName": "Joseph E.", 
            "id": "sg:person.01143237134.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143237134.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Summers", 
            "givenName": "Ronald M.", 
            "id": "sg:person.011331054577.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-14148-0_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003540138", 
              "https://doi.org/10.1007/978-3-319-14148-0_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2009.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008920304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14148-0_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018806438", 
              "https://doi.org/10.1007/978-3-319-14148-0_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jbmr.5650080915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024825624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jbmr.5650080915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024825624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2015.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026281737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2015.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026281737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2015.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026281737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2015.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026281737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2015.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026281737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/8756-3282(95)00258-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046143091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14148-0_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048752581", 
              "https://doi.org/10.1007/978-3-319-14148-0_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/42.796284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061170839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2013.2296976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061696231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2012.143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061744255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1932409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069656769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isbi.2006.1624935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094071881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isbi.2014.6867892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094868876"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016", 
        "datePublishedReg": "2016-01-01", 
        "description": "The precise and accurate segmentation of the vertebral column is essential in the diagnosis and treatment of various orthopedic, neurological, and oncological traumas and pathologies. Segmentation is especially challenging in the presence of pathology such as vertebral compression fractures. In this paper, we propose a method to produce segmentations for osteoporotic compression fractured vertebrae by applying a multi-atlas joint label fusion technique for clinical computed tomography (CT) images. A total of 170 thoracic and lumbar vertebrae were evaluated using atlases from five patients with varying degrees of spinal degeneration. In an osteoporotic cohort of bundled atlases, registration provided an average Dice coefficient and mean absolute surface distance of \\(92.7\\,{\\pm }\\,4.5\\)% and \\(0.32\\,{\\pm }\\,0.13\\)\u00a0mm for osteoporotic vertebrae, respectively, and \\(90.9\\,{\\pm }\\,3.0\\,\\%\\) and \\(0.36\\,{\\pm }\\,0.11\\)\u00a0mm for compression fractured vertebrae.", 
        "editor": [
          {
            "familyName": "Vrtovec", 
            "givenName": "Toma\u017e", 
            "type": "Person"
          }, 
          {
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "type": "Person"
          }, 
          {
            "familyName": "Glocker", 
            "givenName": "Ben", 
            "type": "Person"
          }, 
          {
            "familyName": "Klinder", 
            "givenName": "Tobias", 
            "type": "Person"
          }, 
          {
            "familyName": "Frangi", 
            "givenName": "Alejandro", 
            "type": "Person"
          }, 
          {
            "familyName": "Zheng", 
            "givenName": "Guoyan", 
            "type": "Person"
          }, 
          {
            "familyName": "Li", 
            "givenName": "Shuo", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-41827-8_7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-319-41826-1", 
            "978-3-319-41827-8"
          ], 
          "name": "Computational Methods and Clinical Applications for Spine Imaging", 
          "type": "Book"
        }, 
        "name": "Multi-atlas Segmentation with Joint Label Fusion of Osteoporotic Vertebral Compression Fractures on CT", 
        "pagination": "74-84", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-41827-8_7"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5c8b92cab7e3b1f94dd00953c767e056640b4f50b0a7f9f5bdbe6cf089a08956"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019423124"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-41827-8_7", 
          "https://app.dimensions.ai/details/publication/pub.1019423124"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T17:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000255.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-41827-8_7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41827-8_7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41827-8_7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41827-8_7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41827-8_7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    172 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-41827-8_7 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author Nafdec8b703774b9a911b0f24c33f3756
    4 schema:citation sg:pub.10.1007/978-3-319-14148-0_22
    5 sg:pub.10.1007/978-3-319-14148-0_23
    6 sg:pub.10.1007/978-3-319-14148-0_5
    7 https://doi.org/10.1002/jbmr.5650080915
    8 https://doi.org/10.1016/8756-3282(95)00258-4
    9 https://doi.org/10.1016/j.cmpb.2009.09.002
    10 https://doi.org/10.1016/j.compmedimag.2015.12.006
    11 https://doi.org/10.1109/42.796284
    12 https://doi.org/10.1109/isbi.2006.1624935
    13 https://doi.org/10.1109/isbi.2014.6867892
    14 https://doi.org/10.1109/tmi.2013.2296976
    15 https://doi.org/10.1109/tpami.2012.143
    16 https://doi.org/10.2307/1932409
    17 schema:datePublished 2016
    18 schema:datePublishedReg 2016-01-01
    19 schema:description The precise and accurate segmentation of the vertebral column is essential in the diagnosis and treatment of various orthopedic, neurological, and oncological traumas and pathologies. Segmentation is especially challenging in the presence of pathology such as vertebral compression fractures. In this paper, we propose a method to produce segmentations for osteoporotic compression fractured vertebrae by applying a multi-atlas joint label fusion technique for clinical computed tomography (CT) images. A total of 170 thoracic and lumbar vertebrae were evaluated using atlases from five patients with varying degrees of spinal degeneration. In an osteoporotic cohort of bundled atlases, registration provided an average Dice coefficient and mean absolute surface distance of \(92.7\,{\pm }\,4.5\)% and \(0.32\,{\pm }\,0.13\) mm for osteoporotic vertebrae, respectively, and \(90.9\,{\pm }\,3.0\,\%\) and \(0.36\,{\pm }\,0.11\) mm for compression fractured vertebrae.
    20 schema:editor Nd22c9397cfa3418eaaba7828e7754917
    21 schema:genre chapter
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N69f9e0437f84425b9dad05fcfc17539d
    25 schema:name Multi-atlas Segmentation with Joint Label Fusion of Osteoporotic Vertebral Compression Fractures on CT
    26 schema:pagination 74-84
    27 schema:productId N2a5f5f425d254868b7558b47c65e97c1
    28 N4a124dfa130947a79ddb0f4539f70965
    29 Nf6b498f23a8248c5be18eefc1741c88e
    30 schema:publisher N3a07963e9fda49dabe16fed42fc90a07
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019423124
    32 https://doi.org/10.1007/978-3-319-41827-8_7
    33 schema:sdDatePublished 2019-04-15T17:13
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher Nffbbb5003b074f9086eb8a66166b669f
    36 schema:url http://link.springer.com/10.1007/978-3-319-41827-8_7
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset chapters
    39 rdf:type schema:Chapter
    40 N113cc3c196134fa8afc2cb12958f54f6 rdf:first sg:person.01331447262.96
    41 rdf:rest Nbb5790ed5e7e4488b40cfc8f7b12a0bf
    42 N17fe423cf8f3464cb1f673b2bc6290c9 rdf:first N817f383be7d941d0aadd445950c1447a
    43 rdf:rest Nc2792d19b8a641aaa4f65550bca6efdc
    44 N2a5f5f425d254868b7558b47c65e97c1 schema:name doi
    45 schema:value 10.1007/978-3-319-41827-8_7
    46 rdf:type schema:PropertyValue
    47 N3a07963e9fda49dabe16fed42fc90a07 schema:location Cham
    48 schema:name Springer International Publishing
    49 rdf:type schema:Organisation
    50 N3b1458ca6e4f4c3b8b471d09495e6870 schema:familyName Li
    51 schema:givenName Shuo
    52 rdf:type schema:Person
    53 N42a528da341440edbfe711b4d7947d16 rdf:first Naa9fbb830bac4fccb8d2e556d76326ff
    54 rdf:rest N7f5bc32b4e264793ab5d6805e0a6c312
    55 N4a124dfa130947a79ddb0f4539f70965 schema:name dimensions_id
    56 schema:value pub.1019423124
    57 rdf:type schema:PropertyValue
    58 N4c9b373e7b6447f79b8cd8673ac08f64 schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health
    59 rdf:type schema:Organization
    60 N544716b0df3d46f28246c01aa72f39cc schema:familyName Yao
    61 schema:givenName Jianhua
    62 rdf:type schema:Person
    63 N618282711bcb46688b7f08146a15fdac schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health
    64 rdf:type schema:Organization
    65 N69f9e0437f84425b9dad05fcfc17539d schema:isbn 978-3-319-41826-1
    66 978-3-319-41827-8
    67 schema:name Computational Methods and Clinical Applications for Spine Imaging
    68 rdf:type schema:Book
    69 N7f5bc32b4e264793ab5d6805e0a6c312 rdf:first N3b1458ca6e4f4c3b8b471d09495e6870
    70 rdf:rest rdf:nil
    71 N7f86922584db42929be54b4674f14129 schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health
    72 rdf:type schema:Organization
    73 N817f383be7d941d0aadd445950c1447a schema:familyName Klinder
    74 schema:givenName Tobias
    75 rdf:type schema:Person
    76 N9b8f800e1c1b457ca3ac1e66f125fb81 schema:familyName Glocker
    77 schema:givenName Ben
    78 rdf:type schema:Person
    79 Naa9fbb830bac4fccb8d2e556d76326ff schema:familyName Zheng
    80 schema:givenName Guoyan
    81 rdf:type schema:Person
    82 Nab9e6d3624c545bb9114066adf3679bb schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health
    83 rdf:type schema:Organization
    84 Nafaf1992fe744b7193c24c7be42b0975 rdf:first N544716b0df3d46f28246c01aa72f39cc
    85 rdf:rest Nb0a852eaecba428e86a4b35d0cad4eb2
    86 Nafdec8b703774b9a911b0f24c33f3756 rdf:first sg:person.07562150665.99
    87 rdf:rest Ned3070022ad14ffab49ad73e1dc436c3
    88 Nb0a852eaecba428e86a4b35d0cad4eb2 rdf:first N9b8f800e1c1b457ca3ac1e66f125fb81
    89 rdf:rest N17fe423cf8f3464cb1f673b2bc6290c9
    90 Nb243da5f092c422a9adac59b693471c1 schema:familyName Frangi
    91 schema:givenName Alejandro
    92 rdf:type schema:Person
    93 Nbb5790ed5e7e4488b40cfc8f7b12a0bf rdf:first sg:person.01143237134.25
    94 rdf:rest Nefc28441fee24d688928351ed67a5c90
    95 Nbeb30077c0374d97a1ce10ee27185ea3 schema:name Department of Radiological Sciences, University of California, Irvine School of Medicine
    96 rdf:type schema:Organization
    97 Nc2792d19b8a641aaa4f65550bca6efdc rdf:first Nb243da5f092c422a9adac59b693471c1
    98 rdf:rest N42a528da341440edbfe711b4d7947d16
    99 Nd22c9397cfa3418eaaba7828e7754917 rdf:first Ne60420ddb164450189696762a2d11e1c
    100 rdf:rest Nafaf1992fe744b7193c24c7be42b0975
    101 Ne60420ddb164450189696762a2d11e1c schema:familyName Vrtovec
    102 schema:givenName Tomaž
    103 rdf:type schema:Person
    104 Ned3070022ad14ffab49ad73e1dc436c3 rdf:first sg:person.012366760067.46
    105 rdf:rest N113cc3c196134fa8afc2cb12958f54f6
    106 Nefc28441fee24d688928351ed67a5c90 rdf:first sg:person.011331054577.30
    107 rdf:rest rdf:nil
    108 Nf6b498f23a8248c5be18eefc1741c88e schema:name readcube_id
    109 schema:value 5c8b92cab7e3b1f94dd00953c767e056640b4f50b0a7f9f5bdbe6cf089a08956
    110 rdf:type schema:PropertyValue
    111 Nffbbb5003b074f9086eb8a66166b669f schema:name Springer Nature - SN SciGraph project
    112 rdf:type schema:Organization
    113 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Medical and Health Sciences
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Clinical Sciences
    118 rdf:type schema:DefinedTerm
    119 sg:person.011331054577.30 schema:affiliation N4c9b373e7b6447f79b8cd8673ac08f64
    120 schema:familyName Summers
    121 schema:givenName Ronald M.
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
    123 rdf:type schema:Person
    124 sg:person.01143237134.25 schema:affiliation Nbeb30077c0374d97a1ce10ee27185ea3
    125 schema:familyName Burns
    126 schema:givenName Joseph E.
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143237134.25
    128 rdf:type schema:Person
    129 sg:person.012366760067.46 schema:affiliation N618282711bcb46688b7f08146a15fdac
    130 schema:familyName Yao
    131 schema:givenName Jianhua
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46
    133 rdf:type schema:Person
    134 sg:person.01331447262.96 schema:affiliation N7f86922584db42929be54b4674f14129
    135 schema:familyName Roth
    136 schema:givenName Holger R.
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96
    138 rdf:type schema:Person
    139 sg:person.07562150665.99 schema:affiliation Nab9e6d3624c545bb9114066adf3679bb
    140 schema:familyName Wang
    141 schema:givenName Yinong
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07562150665.99
    143 rdf:type schema:Person
    144 sg:pub.10.1007/978-3-319-14148-0_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048752581
    145 https://doi.org/10.1007/978-3-319-14148-0_22
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/978-3-319-14148-0_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018806438
    148 https://doi.org/10.1007/978-3-319-14148-0_23
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/978-3-319-14148-0_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003540138
    151 https://doi.org/10.1007/978-3-319-14148-0_5
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1002/jbmr.5650080915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024825624
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/8756-3282(95)00258-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046143091
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.cmpb.2009.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008920304
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.compmedimag.2015.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026281737
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/42.796284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170839
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/isbi.2006.1624935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094071881
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/isbi.2014.6867892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094868876
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/tmi.2013.2296976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696231
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/tpami.2012.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744255
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.2307/1932409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069656769
    172 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...