Multi-atlas Segmentation with Joint Label Fusion of Osteoporotic Vertebral Compression Fractures on CT View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016

AUTHORS

Yinong Wang , Jianhua Yao , Holger R. Roth , Joseph E. Burns , Ronald M. Summers

ABSTRACT

The precise and accurate segmentation of the vertebral column is essential in the diagnosis and treatment of various orthopedic, neurological, and oncological traumas and pathologies. Segmentation is especially challenging in the presence of pathology such as vertebral compression fractures. In this paper, we propose a method to produce segmentations for osteoporotic compression fractured vertebrae by applying a multi-atlas joint label fusion technique for clinical computed tomography (CT) images. A total of 170 thoracic and lumbar vertebrae were evaluated using atlases from five patients with varying degrees of spinal degeneration. In an osteoporotic cohort of bundled atlases, registration provided an average Dice coefficient and mean absolute surface distance of \(92.7\,{\pm }\,4.5\)% and \(0.32\,{\pm }\,0.13\) mm for osteoporotic vertebrae, respectively, and \(90.9\,{\pm }\,3.0\,\%\) and \(0.36\,{\pm }\,0.11\) mm for compression fractured vertebrae. More... »

PAGES

74-84

References to SciGraph publications

  • 2015. 3D Vertebra Segmentation by Feature Selection Active Shape Model in RECENT ADVANCES IN COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING
  • 2015. Report of Vertebra Segmentation Challenge in 2014 MICCAI Workshop on Computational Spine Imaging in RECENT ADVANCES IN COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING
  • 2015. Atlas-Based Registration for Accurate Segmentation of Thoracic and Lumbar Vertebrae in CT Data in RECENT ADVANCES IN COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING
  • Book

    TITLE

    Computational Methods and Clinical Applications for Spine Imaging

    ISBN

    978-3-319-41826-1
    978-3-319-41827-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-41827-8_7

    DOI

    http://dx.doi.org/10.1007/978-3-319-41827-8_7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019423124


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Yinong", 
            "id": "sg:person.07562150665.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07562150665.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "id": "sg:person.012366760067.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roth", 
            "givenName": "Holger R.", 
            "id": "sg:person.01331447262.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiological Sciences, University of California, Irvine School of Medicine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Burns", 
            "givenName": "Joseph E.", 
            "id": "sg:person.01143237134.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143237134.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Summers", 
            "givenName": "Ronald M.", 
            "id": "sg:person.011331054577.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-14148-0_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003540138", 
              "https://doi.org/10.1007/978-3-319-14148-0_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2009.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008920304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14148-0_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018806438", 
              "https://doi.org/10.1007/978-3-319-14148-0_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jbmr.5650080915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024825624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jbmr.5650080915", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024825624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2015.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026281737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2015.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026281737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2015.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026281737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2015.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026281737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compmedimag.2015.12.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026281737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/8756-3282(95)00258-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046143091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14148-0_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048752581", 
              "https://doi.org/10.1007/978-3-319-14148-0_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/42.796284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061170839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2013.2296976", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061696231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2012.143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061744255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1932409", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069656769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isbi.2006.1624935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094071881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isbi.2014.6867892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094868876"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016", 
        "datePublishedReg": "2016-01-01", 
        "description": "The precise and accurate segmentation of the vertebral column is essential in the diagnosis and treatment of various orthopedic, neurological, and oncological traumas and pathologies. Segmentation is especially challenging in the presence of pathology such as vertebral compression fractures. In this paper, we propose a method to produce segmentations for osteoporotic compression fractured vertebrae by applying a multi-atlas joint label fusion technique for clinical computed tomography (CT) images. A total of 170 thoracic and lumbar vertebrae were evaluated using atlases from five patients with varying degrees of spinal degeneration. In an osteoporotic cohort of bundled atlases, registration provided an average Dice coefficient and mean absolute surface distance of \\(92.7\\,{\\pm }\\,4.5\\)% and \\(0.32\\,{\\pm }\\,0.13\\)\u00a0mm for osteoporotic vertebrae, respectively, and \\(90.9\\,{\\pm }\\,3.0\\,\\%\\) and \\(0.36\\,{\\pm }\\,0.11\\)\u00a0mm for compression fractured vertebrae.", 
        "editor": [
          {
            "familyName": "Vrtovec", 
            "givenName": "Toma\u017e", 
            "type": "Person"
          }, 
          {
            "familyName": "Yao", 
            "givenName": "Jianhua", 
            "type": "Person"
          }, 
          {
            "familyName": "Glocker", 
            "givenName": "Ben", 
            "type": "Person"
          }, 
          {
            "familyName": "Klinder", 
            "givenName": "Tobias", 
            "type": "Person"
          }, 
          {
            "familyName": "Frangi", 
            "givenName": "Alejandro", 
            "type": "Person"
          }, 
          {
            "familyName": "Zheng", 
            "givenName": "Guoyan", 
            "type": "Person"
          }, 
          {
            "familyName": "Li", 
            "givenName": "Shuo", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-41827-8_7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-319-41826-1", 
            "978-3-319-41827-8"
          ], 
          "name": "Computational Methods and Clinical Applications for Spine Imaging", 
          "type": "Book"
        }, 
        "name": "Multi-atlas Segmentation with Joint Label Fusion of Osteoporotic Vertebral Compression Fractures on CT", 
        "pagination": "74-84", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-41827-8_7"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5c8b92cab7e3b1f94dd00953c767e056640b4f50b0a7f9f5bdbe6cf089a08956"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019423124"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-41827-8_7", 
          "https://app.dimensions.ai/details/publication/pub.1019423124"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T17:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000255.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-41827-8_7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41827-8_7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41827-8_7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41827-8_7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41827-8_7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    172 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-41827-8_7 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author N2379029b7386463e87aca76c4f2c09f5
    4 schema:citation sg:pub.10.1007/978-3-319-14148-0_22
    5 sg:pub.10.1007/978-3-319-14148-0_23
    6 sg:pub.10.1007/978-3-319-14148-0_5
    7 https://doi.org/10.1002/jbmr.5650080915
    8 https://doi.org/10.1016/8756-3282(95)00258-4
    9 https://doi.org/10.1016/j.cmpb.2009.09.002
    10 https://doi.org/10.1016/j.compmedimag.2015.12.006
    11 https://doi.org/10.1109/42.796284
    12 https://doi.org/10.1109/isbi.2006.1624935
    13 https://doi.org/10.1109/isbi.2014.6867892
    14 https://doi.org/10.1109/tmi.2013.2296976
    15 https://doi.org/10.1109/tpami.2012.143
    16 https://doi.org/10.2307/1932409
    17 schema:datePublished 2016
    18 schema:datePublishedReg 2016-01-01
    19 schema:description The precise and accurate segmentation of the vertebral column is essential in the diagnosis and treatment of various orthopedic, neurological, and oncological traumas and pathologies. Segmentation is especially challenging in the presence of pathology such as vertebral compression fractures. In this paper, we propose a method to produce segmentations for osteoporotic compression fractured vertebrae by applying a multi-atlas joint label fusion technique for clinical computed tomography (CT) images. A total of 170 thoracic and lumbar vertebrae were evaluated using atlases from five patients with varying degrees of spinal degeneration. In an osteoporotic cohort of bundled atlases, registration provided an average Dice coefficient and mean absolute surface distance of \(92.7\,{\pm }\,4.5\)% and \(0.32\,{\pm }\,0.13\) mm for osteoporotic vertebrae, respectively, and \(90.9\,{\pm }\,3.0\,\%\) and \(0.36\,{\pm }\,0.11\) mm for compression fractured vertebrae.
    20 schema:editor N330ffe38f84244dda17238c2afb5e4b6
    21 schema:genre chapter
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N85d2f8fc10ba4d4eaa8b1b4270d0c2e1
    25 schema:name Multi-atlas Segmentation with Joint Label Fusion of Osteoporotic Vertebral Compression Fractures on CT
    26 schema:pagination 74-84
    27 schema:productId N812c45352f754124bcae117e594e74cb
    28 Naecd61331b7341309e9b805a123b0543
    29 Nc8c0dcc3017e42f59df79fb2a5b4d6ea
    30 schema:publisher Nb4d80fd60a7445fe83e0931d1d24abda
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019423124
    32 https://doi.org/10.1007/978-3-319-41827-8_7
    33 schema:sdDatePublished 2019-04-15T17:13
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N189c8bdfb5bd4bd9b1c43824b974a4d4
    36 schema:url http://link.springer.com/10.1007/978-3-319-41827-8_7
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset chapters
    39 rdf:type schema:Chapter
    40 N0009bff72efc4b5982d423db85f85526 schema:familyName Li
    41 schema:givenName Shuo
    42 rdf:type schema:Person
    43 N00774d6f3f284569b99fa70d1b17be46 rdf:first N077254bd117c48259dd6de20bf6f629b
    44 rdf:rest N81c052efc60645a9a97ab11be5b6c6bc
    45 N077254bd117c48259dd6de20bf6f629b schema:familyName Klinder
    46 schema:givenName Tobias
    47 rdf:type schema:Person
    48 N0e7e5a12d52b4fe8815106a782b41388 rdf:first sg:person.012366760067.46
    49 rdf:rest N32160ae707944f2cbda655f2e009379f
    50 N189c8bdfb5bd4bd9b1c43824b974a4d4 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N22320ede58ab430981e825c8ae89ec81 schema:familyName Yao
    53 schema:givenName Jianhua
    54 rdf:type schema:Person
    55 N2379029b7386463e87aca76c4f2c09f5 rdf:first sg:person.07562150665.99
    56 rdf:rest N0e7e5a12d52b4fe8815106a782b41388
    57 N253ada1e5cc34af285a66f1215effca2 rdf:first sg:person.011331054577.30
    58 rdf:rest rdf:nil
    59 N2e0ed625ddd840678b2f846d6d0c3f1f rdf:first N22320ede58ab430981e825c8ae89ec81
    60 rdf:rest N4916e376e4db4d6a90dbfe2587cc3c77
    61 N31c3d1118ca347739eb000fa22863d4c schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health
    62 rdf:type schema:Organization
    63 N32160ae707944f2cbda655f2e009379f rdf:first sg:person.01331447262.96
    64 rdf:rest Na4efeb0ab9b54abd80674926cf847311
    65 N330ffe38f84244dda17238c2afb5e4b6 rdf:first N7878a864cad8461caea7f00fed7de034
    66 rdf:rest N2e0ed625ddd840678b2f846d6d0c3f1f
    67 N4916e376e4db4d6a90dbfe2587cc3c77 rdf:first N60510163cea14d31a38b4477e6be4b45
    68 rdf:rest N00774d6f3f284569b99fa70d1b17be46
    69 N4a4fc93fd3eb43b6b8e8323500ccf94d schema:familyName Zheng
    70 schema:givenName Guoyan
    71 rdf:type schema:Person
    72 N5447b98c58764a289e1f3c80de63ef41 schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health
    73 rdf:type schema:Organization
    74 N60510163cea14d31a38b4477e6be4b45 schema:familyName Glocker
    75 schema:givenName Ben
    76 rdf:type schema:Person
    77 N758ce16be30942e382fbe28223560531 rdf:first N4a4fc93fd3eb43b6b8e8323500ccf94d
    78 rdf:rest N8a4862d0dc58475694b0d9b3e41feca1
    79 N7878a864cad8461caea7f00fed7de034 schema:familyName Vrtovec
    80 schema:givenName Tomaž
    81 rdf:type schema:Person
    82 N812c45352f754124bcae117e594e74cb schema:name doi
    83 schema:value 10.1007/978-3-319-41827-8_7
    84 rdf:type schema:PropertyValue
    85 N81c052efc60645a9a97ab11be5b6c6bc rdf:first Ne67aa4ade32840e49beafeef382e5632
    86 rdf:rest N758ce16be30942e382fbe28223560531
    87 N833f47a6f64e4503820f9cd1b8508fbf schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health
    88 rdf:type schema:Organization
    89 N85d2f8fc10ba4d4eaa8b1b4270d0c2e1 schema:isbn 978-3-319-41826-1
    90 978-3-319-41827-8
    91 schema:name Computational Methods and Clinical Applications for Spine Imaging
    92 rdf:type schema:Book
    93 N8a4862d0dc58475694b0d9b3e41feca1 rdf:first N0009bff72efc4b5982d423db85f85526
    94 rdf:rest rdf:nil
    95 Na4efeb0ab9b54abd80674926cf847311 rdf:first sg:person.01143237134.25
    96 rdf:rest N253ada1e5cc34af285a66f1215effca2
    97 Naecd61331b7341309e9b805a123b0543 schema:name readcube_id
    98 schema:value 5c8b92cab7e3b1f94dd00953c767e056640b4f50b0a7f9f5bdbe6cf089a08956
    99 rdf:type schema:PropertyValue
    100 Nb4d80fd60a7445fe83e0931d1d24abda schema:location Cham
    101 schema:name Springer International Publishing
    102 rdf:type schema:Organisation
    103 Nc84d407d1a5d4d61abcf1c353aac30b5 schema:name Department of Radiological Sciences, University of California, Irvine School of Medicine
    104 rdf:type schema:Organization
    105 Nc8c0dcc3017e42f59df79fb2a5b4d6ea schema:name dimensions_id
    106 schema:value pub.1019423124
    107 rdf:type schema:PropertyValue
    108 Nd97617e1d6c1413da8bc8e06f828d12e schema:name Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health
    109 rdf:type schema:Organization
    110 Ne67aa4ade32840e49beafeef382e5632 schema:familyName Frangi
    111 schema:givenName Alejandro
    112 rdf:type schema:Person
    113 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Medical and Health Sciences
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Clinical Sciences
    118 rdf:type schema:DefinedTerm
    119 sg:person.011331054577.30 schema:affiliation N31c3d1118ca347739eb000fa22863d4c
    120 schema:familyName Summers
    121 schema:givenName Ronald M.
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331054577.30
    123 rdf:type schema:Person
    124 sg:person.01143237134.25 schema:affiliation Nc84d407d1a5d4d61abcf1c353aac30b5
    125 schema:familyName Burns
    126 schema:givenName Joseph E.
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143237134.25
    128 rdf:type schema:Person
    129 sg:person.012366760067.46 schema:affiliation N5447b98c58764a289e1f3c80de63ef41
    130 schema:familyName Yao
    131 schema:givenName Jianhua
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012366760067.46
    133 rdf:type schema:Person
    134 sg:person.01331447262.96 schema:affiliation Nd97617e1d6c1413da8bc8e06f828d12e
    135 schema:familyName Roth
    136 schema:givenName Holger R.
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331447262.96
    138 rdf:type schema:Person
    139 sg:person.07562150665.99 schema:affiliation N833f47a6f64e4503820f9cd1b8508fbf
    140 schema:familyName Wang
    141 schema:givenName Yinong
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07562150665.99
    143 rdf:type schema:Person
    144 sg:pub.10.1007/978-3-319-14148-0_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048752581
    145 https://doi.org/10.1007/978-3-319-14148-0_22
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/978-3-319-14148-0_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018806438
    148 https://doi.org/10.1007/978-3-319-14148-0_23
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/978-3-319-14148-0_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003540138
    151 https://doi.org/10.1007/978-3-319-14148-0_5
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1002/jbmr.5650080915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024825624
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/8756-3282(95)00258-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046143091
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.cmpb.2009.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008920304
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.compmedimag.2015.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026281737
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/42.796284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170839
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/isbi.2006.1624935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094071881
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/isbi.2014.6867892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094868876
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/tmi.2013.2296976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696231
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/tpami.2012.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744255
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.2307/1932409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069656769
    172 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...