Adaptation Approaches in Unsupervised Learning: A Survey of the State-of-the-Art and Future Directions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

JunHong Wang , YunQian Miao , Alaa Khamis , Fakhri Karray , Jiye Liang

ABSTRACT

In real applications, data continuously evolve over time and change from one setting to another. This inspires the development of adaptive learning algorithms to deal with this data dynamics. Adaptation mechanisms for unsupervised learning have received an increasing amount of attention from researchers. This research activity has produced a lot of results in tackling some of the challenging problems of the adaptation process that are still open. This paper is a brief review of adaptation mechanisms in unsupervised learning focusing on approaches recently reported in the literature for adaptive clustering and novelty detection and discussing some future directions. Although these approaches have able to cope with different levels of data non-stationarity, there is a crucial need to extend these approaches to be able to handle large amount of data in distributed resource-limited environments. More... »

PAGES

3-11

References to SciGraph publications

Book

TITLE

Image Analysis and Recognition

ISBN

978-3-319-41500-0
978-3-319-41501-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-41501-7_1

DOI

http://dx.doi.org/10.1007/978-3-319-41501-7_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019518789


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "School of Computer and Information Technology, Shanxi University", 
            "Department of Electrical and Computer Engineering, University of Waterloo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "JunHong", 
        "id": "sg:person.012071227657.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012071227657.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NCR Canada Ltd."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miao", 
        "givenName": "YunQian", 
        "id": "sg:person.014647312360.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014647312360.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Suez University", 
          "id": "https://www.grid.ac/institutes/grid.430657.3", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Waterloo", 
            "Engineering Science Department, Suez University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khamis", 
        "givenName": "Alaa", 
        "id": "sg:person.014661751435.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014661751435.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Waterloo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karray", 
        "givenName": "Fakhri", 
        "id": "sg:person.010544641574.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544641574.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanxi University", 
          "id": "https://www.grid.ac/institutes/grid.163032.5", 
          "name": [
            "School of Computer and Information Technology, Shanxi University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Jiye", 
        "id": "sg:person.016375665755.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016375665755.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-22577-2_46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002885792", 
          "https://doi.org/10.1007/978-3-642-22577-2_46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22577-2_46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002885792", 
          "https://doi.org/10.1007/978-3-642-22577-2_46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2007.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003291435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01307-2_84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003376438", 
          "https://doi.org/10.1007/978-3-642-01307-2_84"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01307-2_84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003376438", 
          "https://doi.org/10.1007/978-3-642-01307-2_84"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.02.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005546128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-007-0169-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005974759", 
          "https://doi.org/10.1007/s00521-007-0169-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-007-0169-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005974759", 
          "https://doi.org/10.1007/s00521-007-0169-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-010-0367-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006383366", 
          "https://doi.org/10.1007/s10115-010-0367-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2012.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012542009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(98)00034-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013801456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73954-8_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018950728", 
          "https://doi.org/10.1007/978-3-540-73954-8_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73954-8_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018950728", 
          "https://doi.org/10.1007/978-3-540-73954-8_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.02.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022317784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/csla.1995.0010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022850795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8020-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024521272", 
          "https://doi.org/10.1007/978-1-4419-8020-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-8020-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024521272", 
          "https://doi.org/10.1007/978-1-4419-8020-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56927-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026330191", 
          "https://doi.org/10.1007/978-3-642-56927-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56927-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026330191", 
          "https://doi.org/10.1007/978-3-642-56927-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1541880.1541882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030762489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2010.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035963999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2013.01.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036570113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2740908.2742476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039643533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2014.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040904009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2013.12.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047680630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-016-0929-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048462311", 
          "https://doi.org/10.1007/s10115-016-0929-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1281192.1281212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053267559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.80902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061230958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2007.190667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2008.192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.1100.0825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064726381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15837/ijccc.2013.1.165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068071923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972764.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2007.364138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094529077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/bwcca.2010.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094560933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/bwcca.2010.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094560933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/bwcca.2010.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094560933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2008.4543477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094980868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7551/mitpress/9780262017091.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099519256"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "In real applications, data continuously evolve over time and change from one setting to another. This inspires the development of adaptive learning algorithms to deal with this data dynamics. Adaptation mechanisms for unsupervised learning have received an increasing amount of attention from researchers. This research activity has produced a lot of results in tackling some of the challenging problems of the adaptation process that are still open. This paper is a brief review of adaptation mechanisms in unsupervised learning focusing on approaches recently reported in the literature for adaptive clustering and novelty detection and discussing some future directions. Although these approaches have able to cope with different levels of data non-stationarity, there is a crucial need to extend these approaches to be able to handle large amount of data in distributed resource-limited environments.", 
    "editor": [
      {
        "familyName": "Campilho", 
        "givenName": "Aur\u00e9lio", 
        "type": "Person"
      }, 
      {
        "familyName": "Karray", 
        "givenName": "Fakhri", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-41501-7_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-41500-0", 
        "978-3-319-41501-7"
      ], 
      "name": "Image Analysis and Recognition", 
      "type": "Book"
    }, 
    "name": "Adaptation Approaches in Unsupervised Learning: A Survey of the State-of-the-Art and Future Directions", 
    "pagination": "3-11", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-41501-7_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d0035c48256401aa1935d6041791f060d40d8ea75988367f947d528a3c275a4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019518789"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-41501-7_1", 
      "https://app.dimensions.ai/details/publication/pub.1019518789"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000255.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-41501-7_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41501-7_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41501-7_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41501-7_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41501-7_1'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      23 PREDICATES      59 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-41501-7_1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N58c361df98684db2a2af629d41b7c880
4 schema:citation sg:pub.10.1007/978-1-4419-8020-5
5 sg:pub.10.1007/978-3-540-73954-8_6
6 sg:pub.10.1007/978-3-642-01307-2_84
7 sg:pub.10.1007/978-3-642-22577-2_46
8 sg:pub.10.1007/978-3-642-56927-2
9 sg:pub.10.1007/s00521-007-0169-8
10 sg:pub.10.1007/s10115-010-0367-z
11 sg:pub.10.1007/s10115-016-0929-9
12 https://doi.org/10.1006/csla.1995.0010
13 https://doi.org/10.1016/j.inffus.2014.12.003
14 https://doi.org/10.1016/j.ins.2014.02.052
15 https://doi.org/10.1016/j.neucom.2012.07.011
16 https://doi.org/10.1016/j.neucom.2014.02.036
17 https://doi.org/10.1016/j.patcog.2007.04.010
18 https://doi.org/10.1016/j.patcog.2010.08.005
19 https://doi.org/10.1016/j.physa.2013.01.058
20 https://doi.org/10.1016/j.sigpro.2013.12.026
21 https://doi.org/10.1016/s0925-2312(98)00034-4
22 https://doi.org/10.1109/78.80902
23 https://doi.org/10.1109/bwcca.2010.159
24 https://doi.org/10.1109/robot.2007.364138
25 https://doi.org/10.1109/robot.2008.4543477
26 https://doi.org/10.1109/tkde.2007.190667
27 https://doi.org/10.1109/tkde.2008.192
28 https://doi.org/10.1109/tpami.2008.292
29 https://doi.org/10.1137/1.9781611972764.29
30 https://doi.org/10.1145/1281192.1281212
31 https://doi.org/10.1145/1541880.1541882
32 https://doi.org/10.1145/2740908.2742476
33 https://doi.org/10.1287/opre.1100.0825
34 https://doi.org/10.15837/ijccc.2013.1.165
35 https://doi.org/10.7551/mitpress/9780262017091.001.0001
36 schema:datePublished 2016
37 schema:datePublishedReg 2016-01-01
38 schema:description In real applications, data continuously evolve over time and change from one setting to another. This inspires the development of adaptive learning algorithms to deal with this data dynamics. Adaptation mechanisms for unsupervised learning have received an increasing amount of attention from researchers. This research activity has produced a lot of results in tackling some of the challenging problems of the adaptation process that are still open. This paper is a brief review of adaptation mechanisms in unsupervised learning focusing on approaches recently reported in the literature for adaptive clustering and novelty detection and discussing some future directions. Although these approaches have able to cope with different levels of data non-stationarity, there is a crucial need to extend these approaches to be able to handle large amount of data in distributed resource-limited environments.
39 schema:editor N042cc29f4eda4807b23a722b9fd07459
40 schema:genre chapter
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf Nfac287b1f9814f30b58522c55debc3b9
44 schema:name Adaptation Approaches in Unsupervised Learning: A Survey of the State-of-the-Art and Future Directions
45 schema:pagination 3-11
46 schema:productId N5abbadafbc0947e3a4b9676dc0c3720c
47 Nde4f87200da44c278d2edf51913edc86
48 Nfa14fefb34ab4a57b817ab7433520e69
49 schema:publisher N62fc137c65574a3c823b7e0bac4d451b
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019518789
51 https://doi.org/10.1007/978-3-319-41501-7_1
52 schema:sdDatePublished 2019-04-15T23:51
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nae66ca8722204de5a39394a560ebb383
55 schema:url http://link.springer.com/10.1007/978-3-319-41501-7_1
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N042cc29f4eda4807b23a722b9fd07459 rdf:first Nea556a578754417f905988acccaa604f
60 rdf:rest Nc8a91720d70140dab97317320be52466
61 N3939f30dbffc402eb39e152d0a6f31c0 rdf:first sg:person.010544641574.33
62 rdf:rest N9399fab549204406a40ad9bd79bf7e9c
63 N5336c38acb294cb9b792f5a8c2a2147a rdf:first sg:person.014647312360.53
64 rdf:rest N6a5a5b7ad7764752885ff01af3d2368f
65 N58c361df98684db2a2af629d41b7c880 rdf:first sg:person.012071227657.51
66 rdf:rest N5336c38acb294cb9b792f5a8c2a2147a
67 N5abbadafbc0947e3a4b9676dc0c3720c schema:name readcube_id
68 schema:value 5d0035c48256401aa1935d6041791f060d40d8ea75988367f947d528a3c275a4
69 rdf:type schema:PropertyValue
70 N62fc137c65574a3c823b7e0bac4d451b schema:location Cham
71 schema:name Springer International Publishing
72 rdf:type schema:Organisation
73 N6a5a5b7ad7764752885ff01af3d2368f rdf:first sg:person.014661751435.07
74 rdf:rest N3939f30dbffc402eb39e152d0a6f31c0
75 N9399fab549204406a40ad9bd79bf7e9c rdf:first sg:person.016375665755.34
76 rdf:rest rdf:nil
77 Nae66ca8722204de5a39394a560ebb383 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nb2c761bb90ce43eda8236e343fddde00 schema:familyName Karray
80 schema:givenName Fakhri
81 rdf:type schema:Person
82 Nc6617781a6484122805e5fd37219cbef schema:name NCR Canada Ltd.
83 rdf:type schema:Organization
84 Nc8a91720d70140dab97317320be52466 rdf:first Nb2c761bb90ce43eda8236e343fddde00
85 rdf:rest rdf:nil
86 Nde4f87200da44c278d2edf51913edc86 schema:name doi
87 schema:value 10.1007/978-3-319-41501-7_1
88 rdf:type schema:PropertyValue
89 Nea556a578754417f905988acccaa604f schema:familyName Campilho
90 schema:givenName Aurélio
91 rdf:type schema:Person
92 Nfa14fefb34ab4a57b817ab7433520e69 schema:name dimensions_id
93 schema:value pub.1019518789
94 rdf:type schema:PropertyValue
95 Nfac287b1f9814f30b58522c55debc3b9 schema:isbn 978-3-319-41500-0
96 978-3-319-41501-7
97 schema:name Image Analysis and Recognition
98 rdf:type schema:Book
99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information and Computing Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
103 schema:name Artificial Intelligence and Image Processing
104 rdf:type schema:DefinedTerm
105 sg:person.010544641574.33 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
106 schema:familyName Karray
107 schema:givenName Fakhri
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010544641574.33
109 rdf:type schema:Person
110 sg:person.012071227657.51 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
111 schema:familyName Wang
112 schema:givenName JunHong
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012071227657.51
114 rdf:type schema:Person
115 sg:person.014647312360.53 schema:affiliation Nc6617781a6484122805e5fd37219cbef
116 schema:familyName Miao
117 schema:givenName YunQian
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014647312360.53
119 rdf:type schema:Person
120 sg:person.014661751435.07 schema:affiliation https://www.grid.ac/institutes/grid.430657.3
121 schema:familyName Khamis
122 schema:givenName Alaa
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014661751435.07
124 rdf:type schema:Person
125 sg:person.016375665755.34 schema:affiliation https://www.grid.ac/institutes/grid.163032.5
126 schema:familyName Liang
127 schema:givenName Jiye
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016375665755.34
129 rdf:type schema:Person
130 sg:pub.10.1007/978-1-4419-8020-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024521272
131 https://doi.org/10.1007/978-1-4419-8020-5
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-3-540-73954-8_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018950728
134 https://doi.org/10.1007/978-3-540-73954-8_6
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/978-3-642-01307-2_84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003376438
137 https://doi.org/10.1007/978-3-642-01307-2_84
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/978-3-642-22577-2_46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002885792
140 https://doi.org/10.1007/978-3-642-22577-2_46
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/978-3-642-56927-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026330191
143 https://doi.org/10.1007/978-3-642-56927-2
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s00521-007-0169-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005974759
146 https://doi.org/10.1007/s00521-007-0169-8
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s10115-010-0367-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006383366
149 https://doi.org/10.1007/s10115-010-0367-z
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s10115-016-0929-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048462311
152 https://doi.org/10.1007/s10115-016-0929-9
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1006/csla.1995.0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022850795
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.inffus.2014.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040904009
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.ins.2014.02.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005546128
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.neucom.2012.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012542009
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.neucom.2014.02.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022317784
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.patcog.2007.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003291435
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.patcog.2010.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035963999
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.physa.2013.01.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036570113
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.sigpro.2013.12.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047680630
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0925-2312(98)00034-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013801456
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/78.80902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061230958
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/bwcca.2010.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094560933
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/robot.2007.364138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094529077
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/robot.2008.4543477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094980868
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/tkde.2007.190667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661725
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/tkde.2008.192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661881
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/tpami.2008.292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743627
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1137/1.9781611972764.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800103
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1145/1281192.1281212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053267559
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1145/1541880.1541882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030762489
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1145/2740908.2742476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039643533
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1287/opre.1100.0825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064726381
197 rdf:type schema:CreativeWork
198 https://doi.org/10.15837/ijccc.2013.1.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068071923
199 rdf:type schema:CreativeWork
200 https://doi.org/10.7551/mitpress/9780262017091.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099519256
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.163032.5 schema:alternateName Shanxi University
203 schema:name School of Computer and Information Technology, Shanxi University
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.430657.3 schema:alternateName Suez University
206 schema:name Department of Electrical and Computer Engineering, University of Waterloo
207 Engineering Science Department, Suez University
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
210 schema:name Department of Electrical and Computer Engineering, University of Waterloo
211 School of Computer and Information Technology, Shanxi University
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...