Ontology type: schema:Chapter
2016
AUTHORSEnzo Rucci , Carlos García , Guillermo Botella , Armando De Giusti , Marcelo Naiouf , Manuel Prieto-Matías
ABSTRACTSearching biological sequence database is a common and repeated task in bioinformatics and molecular biology. The Smith–Waterman algorithm is the most accurate method for this kind of search. Unfortunately, this algorithm is computationally demanding and the situation gets worse due to the exponential growth of biological data in the last years. For that reason, the scientific community has made great efforts to accelerate Smith–Waterman biological database searches in a wide variety of hardware platforms. We give a survey of the state-of-the-art in Smith–Waterman protein database search, focusing on four hardware architectures: central processing units, graphics processing units, field programmable gate arrays and Xeon Phi coprocessors. After briefly describing each hardware platform, we analyse temporal evolution, contributions, limitations and experimental work and the results of each implementation. Additionally, as energy efficiency is becoming more important every day, we also survey performance/power consumption works. Finally, we give our view on the future of Smith–Waterman protein searches considering next generations of hardware architectures and its upcoming technologies. More... »
PAGES197-223
Big Data Analytics in Genomics
ISBN
978-3-319-41278-8
978-3-319-41279-5
http://scigraph.springernature.com/pub.10.1007/978-3-319-41279-5_6
DOIhttp://dx.doi.org/10.1007/978-3-319-41279-5_6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1008563487
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Instituto de Investigaci\u00f3n en Inform\u00e1tica LIDI (III-LIDI), CONICET, Universidad Nacional de La Plata"
],
"type": "Organization"
},
"familyName": "Rucci",
"givenName": "Enzo",
"id": "sg:person.0737301461.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737301461.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Complutense University of Madrid",
"id": "https://www.grid.ac/institutes/grid.4795.f",
"name": [
"Dpto. Arquitectura de Computadores y Autom\u00e1tica Universidad Complutense de Madrid"
],
"type": "Organization"
},
"familyName": "Garc\u00eda",
"givenName": "Carlos",
"id": "sg:person.012762576303.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012762576303.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Complutense University of Madrid",
"id": "https://www.grid.ac/institutes/grid.4795.f",
"name": [
"Dpto. Arquitectura de Computadores y Autom\u00e1tica Universidad Complutense de Madrid"
],
"type": "Organization"
},
"familyName": "Botella",
"givenName": "Guillermo",
"id": "sg:person.016574110506.55",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016574110506.55"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Instituto de Investigaci\u00f3n en Inform\u00e1tica LIDI (III-LIDI), CONICET, Universidad Nacional de La Plata"
],
"type": "Organization"
},
"familyName": "De Giusti",
"givenName": "Armando",
"id": "sg:person.013017320261.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013017320261.86"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Instituto de Investigaci\u00f3n en Inform\u00e1tica LIDI (III-LIDI), CONICET, Facultad de Inform\u00e1tica, Universidad Nacional de La Plata"
],
"type": "Organization"
},
"familyName": "Naiouf",
"givenName": "Marcelo",
"id": "sg:person.016551155603.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016551155603.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Complutense University of Madrid",
"id": "https://www.grid.ac/institutes/grid.4795.f",
"name": [
"Dpto. Arquitectura de Computadores y Autom\u00e1tica Universidad Complutense de Madrid"
],
"type": "Organization"
},
"familyName": "Prieto-Mat\u00edas",
"givenName": "Manuel",
"id": "sg:person.011517105361.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517105361.24"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-540-30117-2_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005004444",
"https://doi.org/10.1007/978-3-540-30117-2_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-30117-2_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005004444",
"https://doi.org/10.1007/978-3-540-30117-2_5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/13.2.145",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008319186"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-12-221",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010513713",
"https://doi.org/10.1186/1471-2105-12-221"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0082138",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012228952"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/btl582",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014155557"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1756-0500-2-73",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016918082",
"https://doi.org/10.1186/1756-0500-2-73"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11758549_29",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018950040",
"https://doi.org/10.1007/11758549_29"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11758549_29",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018950040",
"https://doi.org/10.1007/11758549_29"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-2836(70)90057-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021169618"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1756-0500-1-107",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023265691",
"https://doi.org/10.1186/1756-0500-1-107"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-2836(81)90087-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024589839"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/2023607.2023644",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024915581"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-2836(82)90398-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025042064"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/16.8.699",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025315480"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpe.1913",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026721462"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-14-117",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032649695",
"https://doi.org/10.1186/1471-2105-14-117"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpe.3598",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035010756"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5772/23044",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038132194"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1756-0500-3-93",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041106303",
"https://doi.org/10.1186/1756-0500-3-93"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1328554.1328565",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044240927"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1155/2012/752910",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051604338"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s12859-016-0930-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052522445",
"https://doi.org/10.1186/s12859-016-0930-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2105-9-s2-s10",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053056668",
"https://doi.org/10.1186/1471-2105-9-s2-s10"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/jproc.2008.917731",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061296949"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tcsii.2005.853340",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061569178"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tvlsi.2008.2005314",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061815881"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/1094342016654215",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063977417"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/1094342016654215",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063977417"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/bibm.2015.7359735",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093245214"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/ipdpsw.2014.108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093399254"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/ahs.2011.5963957",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094326290"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/asap.2014.6868657",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094370952"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icctd.2010.5645976",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094983481"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/fpl.2014.6927483",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095428801"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/ipdps.2006.1639531",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095519006"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/asap.2004.1342484",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1095742688"
],
"type": "CreativeWork"
}
],
"datePublished": "2016",
"datePublishedReg": "2016-01-01",
"description": "Searching biological sequence database is a common and repeated task in bioinformatics and molecular biology. The Smith\u2013Waterman algorithm is the most accurate method for this kind of search. Unfortunately, this algorithm is computationally demanding and the situation gets worse due to the exponential growth of biological data in the last years. For that reason, the scientific community has made great efforts to accelerate Smith\u2013Waterman biological database searches in a wide variety of hardware platforms. We give a survey of the state-of-the-art in Smith\u2013Waterman protein database search, focusing on four hardware architectures: central processing units, graphics processing units, field programmable gate arrays and Xeon Phi coprocessors. After briefly describing each hardware platform, we analyse temporal evolution, contributions, limitations and experimental work and the results of each implementation. Additionally, as energy efficiency is becoming more important every day, we also survey performance/power consumption works. Finally, we give our view on the future of Smith\u2013Waterman protein searches considering next generations of hardware architectures and its upcoming technologies.",
"editor": [
{
"familyName": "Wong",
"givenName": "Ka-Chun",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-41279-5_6",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-41278-8",
"978-3-319-41279-5"
],
"name": "Big Data Analytics in Genomics",
"type": "Book"
},
"name": "State-of-the-Art in Smith\u2013Waterman Protein Database Search on HPC Platforms",
"pagination": "197-223",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-41279-5_6"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"28cc3dd290d922afb59d9b7e1a2e4d095b0b3fc1b9e5a29d65801fb8d701b532"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1008563487"
]
}
],
"publisher": {
"location": "Cham",
"name": "Springer International Publishing",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-41279-5_6",
"https://app.dimensions.ai/details/publication/pub.1008563487"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T14:09",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000014.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-319-41279-5_6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41279-5_6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41279-5_6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41279-5_6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-41279-5_6'
This table displays all metadata directly associated to this object as RDF triples.
217 TRIPLES
23 PREDICATES
61 URIs
20 LITERALS
8 BLANK NODES