Energy Planning in a Big Data Era: A Theme Study of the Residential Sector View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2017

AUTHORS

Hossein Estiri

ABSTRACT

With a focus on planning for urban energy demand, this chapter re-conceptualizes the general planning process in the big data era based on the improvements that non-linear modeling approaches provide over mainstream traditional linear approaches. First, it demonstrates challenges of conventional linear methodologies in modeling complexities of residential energy demand. Suggesting a non-linear modeling schema to analyzing household energy demand, the paper develops its discussion around repercussions of the use of non-linear modeling in energy policy and planning. Planners and policy-makers are not often equipped with the tools needed to translate complex scientific outcomes into policies. To fill this gap, this chapter proposes modifications to the traditional planning process that will enable planning to benefit from the abundance of data and advances in analytical methodologies in the big data era. The conclusion section introduces short-term implications of the proposed process for energy planning (and planning, in general) in the big data era around three topics of: tool development, data infrastructures, and planning education. More... »

PAGES

219-230

References to SciGraph publications

Book

TITLE

Seeing Cities Through Big Data

ISBN

978-3-319-40900-9
978-3-319-40902-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-40902-3_13

DOI

http://dx.doi.org/10.1007/978-3-319-40902-3_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027896071


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute of Translational Health Sciences, University of Washington"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Estiri", 
        "givenName": "Hossein", 
        "id": "sg:person.01025251237.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025251237.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.eneco.2014.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000213735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0360-5442(92)90032-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003957081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0360-5442(92)90032-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003957081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.euroecorev.2012.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005783141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enbuild.2007.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010403233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1530-9290.2010.00279.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017898955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1530-9290.2010.00279.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017898955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enbuild.2011.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018062357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1787/gen_papers-v2008-art12-en", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022127283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jevp.1998.0105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026362560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.eg.18.110193.001335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027042522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02691938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028259161", 
          "https://doi.org/10.1007/bf02691938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02691938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028259161", 
          "https://doi.org/10.1007/bf02691938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2010.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029819862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2011.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040275338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2011.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040275338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2008.09.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044740944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enpol.2007.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052804499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9488(2006)132:1(10)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057604707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1976.10480949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058301604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/21/12/t03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059109732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0309133303pp340ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064151966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0309133303pp340ra", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064151966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/0958-305x.17.5.735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064580068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/0958-305x.17.5.735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064580068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.26.9.857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064719364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5860/choice.43-0117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073404114"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "With a focus on planning for urban energy demand, this chapter re-conceptualizes the general planning process in the big data era based on the improvements that non-linear modeling approaches provide over mainstream traditional linear approaches. First, it demonstrates challenges of conventional linear methodologies in modeling complexities of residential energy demand. Suggesting a non-linear modeling schema to analyzing household energy demand, the paper develops its discussion around repercussions of the use of non-linear modeling in energy policy and planning. Planners and policy-makers are not often equipped with the tools needed to translate complex scientific outcomes into policies. To fill this gap, this chapter proposes modifications to the traditional planning process that will enable planning to benefit from\u00a0the abundance of data and advances in analytical methodologies in the big data era. The conclusion section introduces short-term implications of the proposed process for energy planning (and planning, in general) in the big data era around three topics of: tool development, data infrastructures, and planning education.", 
    "editor": [
      {
        "familyName": "Thakuriah", 
        "givenName": "Piyushimita", 
        "type": "Person"
      }, 
      {
        "familyName": "Tilahun", 
        "givenName": "Nebiyou", 
        "type": "Person"
      }, 
      {
        "familyName": "Zellner", 
        "givenName": "Moira", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-40902-3_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-40900-9", 
        "978-3-319-40902-3"
      ], 
      "name": "Seeing Cities Through Big Data", 
      "type": "Book"
    }, 
    "name": "Energy Planning in a Big Data Era: A Theme Study of the Residential Sector", 
    "pagination": "219-230", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-40902-3_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "84e312dff590d21709c9c0e7d704e431846b00273c759eb28a23255861b7ce95"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027896071"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-40902-3_13", 
      "https://app.dimensions.ai/details/publication/pub.1027896071"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000260.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-40902-3_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40902-3_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40902-3_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40902-3_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40902-3_13'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      48 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-40902-3_13 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nfe3d8e2dd44640bc895a6fb237969366
4 schema:citation sg:pub.10.1007/bf02691938
5 https://doi.org/10.1006/jevp.1998.0105
6 https://doi.org/10.1016/0360-5442(92)90032-u
7 https://doi.org/10.1016/j.buildenv.2010.01.021
8 https://doi.org/10.1016/j.enbuild.2007.03.007
9 https://doi.org/10.1016/j.enbuild.2011.02.002
10 https://doi.org/10.1016/j.eneco.2014.02.013
11 https://doi.org/10.1016/j.energy.2011.07.009
12 https://doi.org/10.1016/j.enpol.2007.05.007
13 https://doi.org/10.1016/j.euroecorev.2012.02.007
14 https://doi.org/10.1016/j.rser.2008.09.033
15 https://doi.org/10.1061/(asce)0733-9488(2006)132:1(10)
16 https://doi.org/10.1080/01621459.1976.10480949
17 https://doi.org/10.1088/0951-7715/21/12/t03
18 https://doi.org/10.1111/j.1530-9290.2010.00279.x
19 https://doi.org/10.1146/annurev.eg.18.110193.001335
20 https://doi.org/10.1191/0309133303pp340ra
21 https://doi.org/10.1260/0958-305x.17.5.735
22 https://doi.org/10.1287/mnsc.26.9.857
23 https://doi.org/10.1787/gen_papers-v2008-art12-en
24 https://doi.org/10.5860/choice.43-0117
25 schema:datePublished 2017
26 schema:datePublishedReg 2017-01-01
27 schema:description With a focus on planning for urban energy demand, this chapter re-conceptualizes the general planning process in the big data era based on the improvements that non-linear modeling approaches provide over mainstream traditional linear approaches. First, it demonstrates challenges of conventional linear methodologies in modeling complexities of residential energy demand. Suggesting a non-linear modeling schema to analyzing household energy demand, the paper develops its discussion around repercussions of the use of non-linear modeling in energy policy and planning. Planners and policy-makers are not often equipped with the tools needed to translate complex scientific outcomes into policies. To fill this gap, this chapter proposes modifications to the traditional planning process that will enable planning to benefit from the abundance of data and advances in analytical methodologies in the big data era. The conclusion section introduces short-term implications of the proposed process for energy planning (and planning, in general) in the big data era around three topics of: tool development, data infrastructures, and planning education.
28 schema:editor Nf9eab60584ab4acabe62893d1177bd01
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf Nfb0e3c81b57243cfa15a25400e624f0a
33 schema:name Energy Planning in a Big Data Era: A Theme Study of the Residential Sector
34 schema:pagination 219-230
35 schema:productId N1ddafa047e6e42e58e7459d17275b159
36 N9c346c6c4bb04437807ff76b996b98be
37 Ne92cc6107674429e9887cb95c0861d3e
38 schema:publisher Ncc21ec895f894893adfc183fbf33984f
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027896071
40 https://doi.org/10.1007/978-3-319-40902-3_13
41 schema:sdDatePublished 2019-04-15T22:55
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N4f9566b4b8c345f193e65417a0613fc4
44 schema:url http://link.springer.com/10.1007/978-3-319-40902-3_13
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N1ddafa047e6e42e58e7459d17275b159 schema:name doi
49 schema:value 10.1007/978-3-319-40902-3_13
50 rdf:type schema:PropertyValue
51 N2bfbcf690e434bfb9b233f9dd5710a25 schema:familyName Zellner
52 schema:givenName Moira
53 rdf:type schema:Person
54 N4f9566b4b8c345f193e65417a0613fc4 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N53b1a85423fa4c80a33b90c6dadb56d4 rdf:first Ncda923b0bff746e7a23f4f1d156c6fc0
57 rdf:rest N6845325619774c3594e126e9f78d21d9
58 N6845325619774c3594e126e9f78d21d9 rdf:first N2bfbcf690e434bfb9b233f9dd5710a25
59 rdf:rest rdf:nil
60 N9c346c6c4bb04437807ff76b996b98be schema:name dimensions_id
61 schema:value pub.1027896071
62 rdf:type schema:PropertyValue
63 Nc987b36c9a384dcea430922f4dedd17e schema:familyName Thakuriah
64 schema:givenName Piyushimita
65 rdf:type schema:Person
66 Ncc21ec895f894893adfc183fbf33984f schema:location Cham
67 schema:name Springer International Publishing
68 rdf:type schema:Organisation
69 Ncda923b0bff746e7a23f4f1d156c6fc0 schema:familyName Tilahun
70 schema:givenName Nebiyou
71 rdf:type schema:Person
72 Ne92cc6107674429e9887cb95c0861d3e schema:name readcube_id
73 schema:value 84e312dff590d21709c9c0e7d704e431846b00273c759eb28a23255861b7ce95
74 rdf:type schema:PropertyValue
75 Nf538500248794dd39d7ef9b8fa6b7d2b schema:name Institute of Translational Health Sciences, University of Washington
76 rdf:type schema:Organization
77 Nf9eab60584ab4acabe62893d1177bd01 rdf:first Nc987b36c9a384dcea430922f4dedd17e
78 rdf:rest N53b1a85423fa4c80a33b90c6dadb56d4
79 Nfb0e3c81b57243cfa15a25400e624f0a schema:isbn 978-3-319-40900-9
80 978-3-319-40902-3
81 schema:name Seeing Cities Through Big Data
82 rdf:type schema:Book
83 Nfe3d8e2dd44640bc895a6fb237969366 rdf:first sg:person.01025251237.18
84 rdf:rest rdf:nil
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
89 schema:name Statistics
90 rdf:type schema:DefinedTerm
91 sg:person.01025251237.18 schema:affiliation Nf538500248794dd39d7ef9b8fa6b7d2b
92 schema:familyName Estiri
93 schema:givenName Hossein
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025251237.18
95 rdf:type schema:Person
96 sg:pub.10.1007/bf02691938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028259161
97 https://doi.org/10.1007/bf02691938
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1006/jevp.1998.0105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026362560
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0360-5442(92)90032-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1003957081
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.buildenv.2010.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029819862
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.enbuild.2007.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010403233
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.enbuild.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018062357
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.eneco.2014.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000213735
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.energy.2011.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040275338
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.enpol.2007.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052804499
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.euroecorev.2012.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005783141
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.rser.2008.09.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044740944
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1061/(asce)0733-9488(2006)132:1(10) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057604707
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1080/01621459.1976.10480949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058301604
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1088/0951-7715/21/12/t03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059109732
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1111/j.1530-9290.2010.00279.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017898955
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1146/annurev.eg.18.110193.001335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027042522
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1191/0309133303pp340ra schema:sameAs https://app.dimensions.ai/details/publication/pub.1064151966
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1260/0958-305x.17.5.735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064580068
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1287/mnsc.26.9.857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064719364
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1787/gen_papers-v2008-art12-en schema:sameAs https://app.dimensions.ai/details/publication/pub.1022127283
136 rdf:type schema:CreativeWork
137 https://doi.org/10.5860/choice.43-0117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073404114
138 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...