User Interface for Customizing Patents Search: An Exploratory Study View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Arthi M. Krishna , Brian Feldman , Joseph Wolf , Greg Gabel , Scott Beliveau , Thomas Beach

ABSTRACT

Prior art searching is a critical and knowledge-intensive step in the examination process of a patent application. Historically, the approach to automated prior art searching is to determine a few keywords from the patent application and, based on simple text frequency matching of these keywords, retrieve published applications and patents. Several emerging techniques show promise to increase the accuracy of automated searching, including analysis of: named entity extraction, explanations of how patents are classified, relationships between references cited by the examiner, weighing words found in some sections of the patent application differently than others, and lastly using the examiners’ domain knowledge such as synonyms. These techniques are explored in this study. Our approach is firstly, to design a user interface that leverages the above-mentioned processing techniques for the user and secondly, to provide visual cues that can guide examiner to fine tune search algorithms. The user interface displays a number of controls that affect the behavior of the underlying search algorithm—a tag cloud of the top keywords used to retrieve patents, sliders for weights on the different sections of a patent application (e.g., abstract, claims, title or specification), and a list of synonyms and stop-words. Users are provided with visual icons that give quick indication of the quality of the results, such as whether the results share a feature with the patent-at-issue, such as both citing to the same reference or having a common classification. This exploratory study shows results of seven variations of the search algorithm on a test corpus of 100500 patent documents. More... »

PAGES

264-269

References to SciGraph publications

  • 2010. Prior Art Search Using International Patent Classification Codes and All-Claims-Queries in MULTILINGUAL INFORMATION ACCESS EVALUATION I. TEXT RETRIEVAL EXPERIMENTS
  • 2013. Exploring Patent Passage Retrieval Using Nouns Phrases in ADVANCES IN INFORMATION RETRIEVAL
  • 2010. Improving Retrievability of Patents in Prior-Art Search in ADVANCES IN INFORMATION RETRIEVAL
  • Book

    TITLE

    HCI International 2016 – Posters' Extended Abstracts

    ISBN

    978-3-319-40547-6
    978-3-319-40548-3

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-40548-3_44

    DOI

    http://dx.doi.org/10.1007/978-3-319-40548-3_44

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018096895


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "United States Patent and Trademark Office", 
              "id": "https://www.grid.ac/institutes/grid.431422.2", 
              "name": [
                "United States Patent and Trademark Office"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krishna", 
            "givenName": "Arthi M.", 
            "id": "sg:person.011465610524.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465610524.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "United States Patent and Trademark Office", 
              "id": "https://www.grid.ac/institutes/grid.431422.2", 
              "name": [
                "United States Patent and Trademark Office"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feldman", 
            "givenName": "Brian", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "United States Patent and Trademark Office", 
              "id": "https://www.grid.ac/institutes/grid.431422.2", 
              "name": [
                "United States Patent and Trademark Office"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wolf", 
            "givenName": "Joseph", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "United States Patent and Trademark Office", 
              "id": "https://www.grid.ac/institutes/grid.431422.2", 
              "name": [
                "United States Patent and Trademark Office"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gabel", 
            "givenName": "Greg", 
            "id": "sg:person.014453512524.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014453512524.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "United States Patent and Trademark Office", 
              "id": "https://www.grid.ac/institutes/grid.431422.2", 
              "name": [
                "United States Patent and Trademark Office"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beliveau", 
            "givenName": "Scott", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "United States Patent and Trademark Office", 
              "id": "https://www.grid.ac/institutes/grid.431422.2", 
              "name": [
                "United States Patent and Trademark Office"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beach", 
            "givenName": "Thomas", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/1835449.1835551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000664665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-12275-0_40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004679860", 
              "https://doi.org/10.1007/978-3-642-12275-0_40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-12275-0_40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004679860", 
              "https://doi.org/10.1007/978-3-642-12275-0_40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1277741.1277912", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018522498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15754-7_54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027780665", 
              "https://doi.org/10.1007/978-3-642-15754-7_54"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15754-7_54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027780665", 
              "https://doi.org/10.1007/978-3-642-15754-7_54"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1361684.1361686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028368231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-36973-5_58", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051665885", 
              "https://doi.org/10.1007/978-3-642-36973-5_58"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016", 
        "datePublishedReg": "2016-01-01", 
        "description": "Prior art searching is a critical and knowledge-intensive step in the examination process of a patent application. Historically, the approach to automated prior art searching is to determine a few keywords from the patent application and, based on simple text frequency matching of these keywords, retrieve published applications and patents. Several emerging techniques show promise to increase the accuracy of automated searching, including analysis of: named entity extraction, explanations of how patents are classified, relationships between references cited by the examiner, weighing words found in some sections of the patent application differently than others, and lastly using the examiners\u2019 domain knowledge such as synonyms. These techniques are explored in this study. Our approach is firstly, to design a user interface that leverages the above-mentioned processing techniques for the user and secondly, to provide visual cues that can guide examiner to fine tune search algorithms. The user interface displays a number of controls that affect the behavior of the underlying search algorithm\u2014a tag cloud of the top keywords used to retrieve patents, sliders for weights on the different sections of a patent application (e.g., abstract, claims, title or specification), and a list of synonyms and stop-words. Users are provided with visual icons that give quick indication of the quality of the results, such as whether the results share a feature with the patent-at-issue, such as both citing to the same reference or having a common classification.\u00a0This exploratory study shows results of seven variations of the search algorithm on a test corpus of 100500 patent documents.", 
        "editor": [
          {
            "familyName": "Stephanidis", 
            "givenName": "Constantine", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-40548-3_44", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-40547-6", 
            "978-3-319-40548-3"
          ], 
          "name": "HCI International 2016 \u2013 Posters' Extended Abstracts", 
          "type": "Book"
        }, 
        "name": "User Interface for Customizing Patents Search: An Exploratory Study", 
        "pagination": "264-269", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-40548-3_44"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5639767f5cf69997db3e130975593818ca53dc36cfb46d62c696ea9281f3c60d"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018096895"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-40548-3_44", 
          "https://app.dimensions.ai/details/publication/pub.1018096895"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T11:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000254.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-40548-3_44"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40548-3_44'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40548-3_44'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40548-3_44'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40548-3_44'


     

    This table displays all metadata directly associated to this object as RDF triples.

    117 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-40548-3_44 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N76b5c393542d45619b626ea76f3cc403
    4 schema:citation sg:pub.10.1007/978-3-642-12275-0_40
    5 sg:pub.10.1007/978-3-642-15754-7_54
    6 sg:pub.10.1007/978-3-642-36973-5_58
    7 https://doi.org/10.1145/1277741.1277912
    8 https://doi.org/10.1145/1361684.1361686
    9 https://doi.org/10.1145/1835449.1835551
    10 schema:datePublished 2016
    11 schema:datePublishedReg 2016-01-01
    12 schema:description Prior art searching is a critical and knowledge-intensive step in the examination process of a patent application. Historically, the approach to automated prior art searching is to determine a few keywords from the patent application and, based on simple text frequency matching of these keywords, retrieve published applications and patents. Several emerging techniques show promise to increase the accuracy of automated searching, including analysis of: named entity extraction, explanations of how patents are classified, relationships between references cited by the examiner, weighing words found in some sections of the patent application differently than others, and lastly using the examiners’ domain knowledge such as synonyms. These techniques are explored in this study. Our approach is firstly, to design a user interface that leverages the above-mentioned processing techniques for the user and secondly, to provide visual cues that can guide examiner to fine tune search algorithms. The user interface displays a number of controls that affect the behavior of the underlying search algorithm—a tag cloud of the top keywords used to retrieve patents, sliders for weights on the different sections of a patent application (e.g., abstract, claims, title or specification), and a list of synonyms and stop-words. Users are provided with visual icons that give quick indication of the quality of the results, such as whether the results share a feature with the patent-at-issue, such as both citing to the same reference or having a common classification. This exploratory study shows results of seven variations of the search algorithm on a test corpus of 100500 patent documents.
    13 schema:editor N275ad79aca114223b40ef771cf16bcc9
    14 schema:genre chapter
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N564462792db74b11ac893f0b82eb45fd
    18 schema:name User Interface for Customizing Patents Search: An Exploratory Study
    19 schema:pagination 264-269
    20 schema:productId N1039299bda2d4ccd8a6a7ebd98c1d680
    21 N5593513873c04eaaad4a094d4c99a207
    22 N9fb5df91e0fb4113884576fbec36e5bc
    23 schema:publisher Nc6c279b8f62848a898184ae820f071e9
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018096895
    25 https://doi.org/10.1007/978-3-319-40548-3_44
    26 schema:sdDatePublished 2019-04-15T11:33
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N01796fc7c2384ce79688220609e509b5
    29 schema:url http://link.springer.com/10.1007/978-3-319-40548-3_44
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset chapters
    32 rdf:type schema:Chapter
    33 N01796fc7c2384ce79688220609e509b5 schema:name Springer Nature - SN SciGraph project
    34 rdf:type schema:Organization
    35 N078605cdb75c4c74b0b5b289cefb2d1b schema:affiliation https://www.grid.ac/institutes/grid.431422.2
    36 schema:familyName Feldman
    37 schema:givenName Brian
    38 rdf:type schema:Person
    39 N1039299bda2d4ccd8a6a7ebd98c1d680 schema:name readcube_id
    40 schema:value 5639767f5cf69997db3e130975593818ca53dc36cfb46d62c696ea9281f3c60d
    41 rdf:type schema:PropertyValue
    42 N1df63dff4f024cb5be7adf11b19dc4ae rdf:first N078605cdb75c4c74b0b5b289cefb2d1b
    43 rdf:rest Nf25c4b455b364b9f9d88626dcce63f17
    44 N275ad79aca114223b40ef771cf16bcc9 rdf:first N82f025e2c32b4f87aeadf12ecd170b34
    45 rdf:rest rdf:nil
    46 N47e6213795bc40b79e976bad7f90a867 schema:affiliation https://www.grid.ac/institutes/grid.431422.2
    47 schema:familyName Beliveau
    48 schema:givenName Scott
    49 rdf:type schema:Person
    50 N5593513873c04eaaad4a094d4c99a207 schema:name dimensions_id
    51 schema:value pub.1018096895
    52 rdf:type schema:PropertyValue
    53 N564462792db74b11ac893f0b82eb45fd schema:isbn 978-3-319-40547-6
    54 978-3-319-40548-3
    55 schema:name HCI International 2016 – Posters' Extended Abstracts
    56 rdf:type schema:Book
    57 N76b5c393542d45619b626ea76f3cc403 rdf:first sg:person.011465610524.43
    58 rdf:rest N1df63dff4f024cb5be7adf11b19dc4ae
    59 N7897914f43ac4ab3811ab6a52681f43b schema:affiliation https://www.grid.ac/institutes/grid.431422.2
    60 schema:familyName Beach
    61 schema:givenName Thomas
    62 rdf:type schema:Person
    63 N7dba4fec8e624504a7594da38994a6f8 rdf:first N7897914f43ac4ab3811ab6a52681f43b
    64 rdf:rest rdf:nil
    65 N82f025e2c32b4f87aeadf12ecd170b34 schema:familyName Stephanidis
    66 schema:givenName Constantine
    67 rdf:type schema:Person
    68 N9fb5df91e0fb4113884576fbec36e5bc schema:name doi
    69 schema:value 10.1007/978-3-319-40548-3_44
    70 rdf:type schema:PropertyValue
    71 Na3d85e0a07974dc4b583bfe18e22f150 rdf:first N47e6213795bc40b79e976bad7f90a867
    72 rdf:rest N7dba4fec8e624504a7594da38994a6f8
    73 Nc6c279b8f62848a898184ae820f071e9 schema:location Cham
    74 schema:name Springer International Publishing
    75 rdf:type schema:Organisation
    76 Ncdb41e9f05764998983addb7603598f7 rdf:first sg:person.014453512524.13
    77 rdf:rest Na3d85e0a07974dc4b583bfe18e22f150
    78 Nda4f86953e524da38f7c7cf3f895d2bb schema:affiliation https://www.grid.ac/institutes/grid.431422.2
    79 schema:familyName Wolf
    80 schema:givenName Joseph
    81 rdf:type schema:Person
    82 Nf25c4b455b364b9f9d88626dcce63f17 rdf:first Nda4f86953e524da38f7c7cf3f895d2bb
    83 rdf:rest Ncdb41e9f05764998983addb7603598f7
    84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Information and Computing Sciences
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Artificial Intelligence and Image Processing
    89 rdf:type schema:DefinedTerm
    90 sg:person.011465610524.43 schema:affiliation https://www.grid.ac/institutes/grid.431422.2
    91 schema:familyName Krishna
    92 schema:givenName Arthi M.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465610524.43
    94 rdf:type schema:Person
    95 sg:person.014453512524.13 schema:affiliation https://www.grid.ac/institutes/grid.431422.2
    96 schema:familyName Gabel
    97 schema:givenName Greg
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014453512524.13
    99 rdf:type schema:Person
    100 sg:pub.10.1007/978-3-642-12275-0_40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004679860
    101 https://doi.org/10.1007/978-3-642-12275-0_40
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/978-3-642-15754-7_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027780665
    104 https://doi.org/10.1007/978-3-642-15754-7_54
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/978-3-642-36973-5_58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051665885
    107 https://doi.org/10.1007/978-3-642-36973-5_58
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1145/1277741.1277912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018522498
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1145/1361684.1361686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028368231
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1145/1835449.1835551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000664665
    114 rdf:type schema:CreativeWork
    115 https://www.grid.ac/institutes/grid.431422.2 schema:alternateName United States Patent and Trademark Office
    116 schema:name United States Patent and Trademark Office
    117 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...