Bistable Endemic States in a Susceptible-Infectious-Susceptible Model with Behavior-Dependent Vaccination View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-07-28

AUTHORS

Alberto d’Onofrio , Piero Manfredi

ABSTRACT

Several new vaccines have the characteristic of being “imperfect” that is their protection wanes over time and supplies only partial protection from infection. On the other hand recent research has shown that the agents’ behavioral responses have the potential to dramatically affect the dynamics and control of infections. In this paper we investigate, for a simple susceptible-infective-susceptible (SIS) infection, the dynamic interplay between human behavior, in the form of an increasing prevalence-dependent vaccine uptake function, and vaccine imperfections. The mathematical analysis of the ensuing SISV model shows a complexly articulated bifurcation structure. First, the inclusion of the simplest possible hypothesis about vaccination behavior is capable to trigger, in appropriate windows of the key parameters, phenomena of multistability of endemic states. Second, as far as the stability of the disease-free equilibrium is concerned, the model preserves the backward bifurcation which is characteristic of SIS-type infections controlled by imperfect vaccines. More... »

PAGES

341-354

Book

TITLE

Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases

ISBN

978-3-319-40411-0
978-3-319-40413-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-40413-4_21

DOI

http://dx.doi.org/10.1007/978-3-319-40413-4_21

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049627606


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1107", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Immunology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "International Prevention Research Institute, 95 Cours Lafayette, 69006, Lyon, France", 
          "id": "http://www.grid.ac/institutes/grid.419381.6", 
          "name": [
            "International Prevention Research Institute, 95 Cours Lafayette, 69006, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "d\u2019Onofrio", 
        "givenName": "Alberto", 
        "id": "sg:person.0622225547.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622225547.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Economics and Management, University of Pisa, Via Ridolfi 10, 56124, Pisa, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "Department of Economics and Management, University of Pisa, Via Ridolfi 10, 56124, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manfredi", 
        "givenName": "Piero", 
        "id": "sg:person.0773310412.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773310412.52"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-07-28", 
    "datePublishedReg": "2016-07-28", 
    "description": "Several new vaccines have the characteristic of being \u201cimperfect\u201d that is their protection wanes over time and supplies only partial protection from infection. On the other hand recent research has shown that the agents\u2019 behavioral responses have the potential to dramatically affect the dynamics and control of infections. In this paper we investigate, for a simple susceptible-infective-susceptible (SIS) infection, the dynamic interplay between human behavior, in the form of an increasing prevalence-dependent vaccine uptake function, and vaccine imperfections. The mathematical analysis of the ensuing SISV model shows a complexly articulated bifurcation structure. First, the inclusion of the simplest possible hypothesis about vaccination behavior is capable to trigger, in appropriate windows of the key parameters, phenomena of multistability of endemic states. Second, as far as the stability of the disease-free equilibrium is concerned, the model preserves the backward bifurcation which is characteristic of SIS-type infections controlled by imperfect vaccines.", 
    "editor": [
      {
        "familyName": "Chowell", 
        "givenName": "Gerardo", 
        "type": "Person"
      }, 
      {
        "familyName": "Hyman", 
        "givenName": "James M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-40413-4_21", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-40411-0", 
        "978-3-319-40413-4"
      ], 
      "name": "Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases", 
      "type": "Book"
    }, 
    "keywords": [
      "control of infection", 
      "endemic state", 
      "protection wanes", 
      "susceptible infections", 
      "vaccination behavior", 
      "new vaccines", 
      "infection", 
      "partial protection", 
      "behavioral responses", 
      "imperfect vaccine", 
      "vaccine", 
      "backward bifurcation", 
      "uptake function", 
      "vaccination", 
      "disease-free equilibrium", 
      "susceptible model", 
      "possible hypotheses", 
      "response", 
      "appropriate window", 
      "recent research", 
      "control", 
      "dynamic interplay", 
      "wane", 
      "protection", 
      "hypothesis", 
      "function", 
      "inclusion", 
      "model", 
      "time", 
      "potential", 
      "analysis", 
      "characteristics", 
      "state", 
      "interplay", 
      "research", 
      "form", 
      "behavior", 
      "window", 
      "bifurcation", 
      "parameters", 
      "agents\u2019 behavioral responses", 
      "human behavior", 
      "phenomenon", 
      "mathematical analysis", 
      "bifurcation structure", 
      "complexly", 
      "phenomenon of multistability", 
      "stability", 
      "structure", 
      "multistability", 
      "key parameters", 
      "dynamics", 
      "imperfections", 
      "equilibrium", 
      "paper"
    ], 
    "name": "Bistable Endemic States in a Susceptible-Infectious-Susceptible Model with Behavior-Dependent Vaccination", 
    "pagination": "341-354", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049627606"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-40413-4_21"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-40413-4_21", 
      "https://app.dimensions.ai/details/publication/pub.1049627606"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_443.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-40413-4_21"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40413-4_21'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40413-4_21'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40413-4_21'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40413-4_21'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      23 PREDICATES      80 URIs      73 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-40413-4_21 schema:about anzsrc-for:11
2 anzsrc-for:1107
3 schema:author N826b7a8613b44fe5b9818be21266a174
4 schema:datePublished 2016-07-28
5 schema:datePublishedReg 2016-07-28
6 schema:description Several new vaccines have the characteristic of being “imperfect” that is their protection wanes over time and supplies only partial protection from infection. On the other hand recent research has shown that the agents’ behavioral responses have the potential to dramatically affect the dynamics and control of infections. In this paper we investigate, for a simple susceptible-infective-susceptible (SIS) infection, the dynamic interplay between human behavior, in the form of an increasing prevalence-dependent vaccine uptake function, and vaccine imperfections. The mathematical analysis of the ensuing SISV model shows a complexly articulated bifurcation structure. First, the inclusion of the simplest possible hypothesis about vaccination behavior is capable to trigger, in appropriate windows of the key parameters, phenomena of multistability of endemic states. Second, as far as the stability of the disease-free equilibrium is concerned, the model preserves the backward bifurcation which is characteristic of SIS-type infections controlled by imperfect vaccines.
7 schema:editor Na9b101e86cf940b4a8ef1250dbef5bd7
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1739fb11e40240eeb0b434278ef4bb6f
12 schema:keywords agents’ behavioral responses
13 analysis
14 appropriate window
15 backward bifurcation
16 behavior
17 behavioral responses
18 bifurcation
19 bifurcation structure
20 characteristics
21 complexly
22 control
23 control of infection
24 disease-free equilibrium
25 dynamic interplay
26 dynamics
27 endemic state
28 equilibrium
29 form
30 function
31 human behavior
32 hypothesis
33 imperfect vaccine
34 imperfections
35 inclusion
36 infection
37 interplay
38 key parameters
39 mathematical analysis
40 model
41 multistability
42 new vaccines
43 paper
44 parameters
45 partial protection
46 phenomenon
47 phenomenon of multistability
48 possible hypotheses
49 potential
50 protection
51 protection wanes
52 recent research
53 research
54 response
55 stability
56 state
57 structure
58 susceptible infections
59 susceptible model
60 time
61 uptake function
62 vaccination
63 vaccination behavior
64 vaccine
65 wane
66 window
67 schema:name Bistable Endemic States in a Susceptible-Infectious-Susceptible Model with Behavior-Dependent Vaccination
68 schema:pagination 341-354
69 schema:productId Nad6fd39683b54a91ab8dd1dcc0ff9b95
70 Nbea7173837f5448a8905c4728d34109e
71 schema:publisher N8b545d3d7ff2499894cac97231cb6645
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049627606
73 https://doi.org/10.1007/978-3-319-40413-4_21
74 schema:sdDatePublished 2022-06-01T22:35
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N96e0ac69dc0a460ca38859213de6be90
77 schema:url https://doi.org/10.1007/978-3-319-40413-4_21
78 sgo:license sg:explorer/license/
79 sgo:sdDataset chapters
80 rdf:type schema:Chapter
81 N1739fb11e40240eeb0b434278ef4bb6f schema:isbn 978-3-319-40411-0
82 978-3-319-40413-4
83 schema:name Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases
84 rdf:type schema:Book
85 N20d51d27e81c431493c9696dcd530204 schema:familyName Chowell
86 schema:givenName Gerardo
87 rdf:type schema:Person
88 N29df9484cb494f84be6fb69048c79dcd rdf:first sg:person.0773310412.52
89 rdf:rest rdf:nil
90 N71967397e4204276b81922250a82b8f4 rdf:first Nd5d9e3cfba4348b2b28df21268ac27df
91 rdf:rest rdf:nil
92 N826b7a8613b44fe5b9818be21266a174 rdf:first sg:person.0622225547.87
93 rdf:rest N29df9484cb494f84be6fb69048c79dcd
94 N8b545d3d7ff2499894cac97231cb6645 schema:name Springer Nature
95 rdf:type schema:Organisation
96 N96e0ac69dc0a460ca38859213de6be90 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Na9b101e86cf940b4a8ef1250dbef5bd7 rdf:first N20d51d27e81c431493c9696dcd530204
99 rdf:rest N71967397e4204276b81922250a82b8f4
100 Nad6fd39683b54a91ab8dd1dcc0ff9b95 schema:name dimensions_id
101 schema:value pub.1049627606
102 rdf:type schema:PropertyValue
103 Nbea7173837f5448a8905c4728d34109e schema:name doi
104 schema:value 10.1007/978-3-319-40413-4_21
105 rdf:type schema:PropertyValue
106 Nd5d9e3cfba4348b2b28df21268ac27df schema:familyName Hyman
107 schema:givenName James M.
108 rdf:type schema:Person
109 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
110 schema:name Medical and Health Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:1107 schema:inDefinedTermSet anzsrc-for:
113 schema:name Immunology
114 rdf:type schema:DefinedTerm
115 sg:person.0622225547.87 schema:affiliation grid-institutes:grid.419381.6
116 schema:familyName d’Onofrio
117 schema:givenName Alberto
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622225547.87
119 rdf:type schema:Person
120 sg:person.0773310412.52 schema:affiliation grid-institutes:grid.5395.a
121 schema:familyName Manfredi
122 schema:givenName Piero
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773310412.52
124 rdf:type schema:Person
125 grid-institutes:grid.419381.6 schema:alternateName International Prevention Research Institute, 95 Cours Lafayette, 69006, Lyon, France
126 schema:name International Prevention Research Institute, 95 Cours Lafayette, 69006, Lyon, France
127 rdf:type schema:Organization
128 grid-institutes:grid.5395.a schema:alternateName Department of Economics and Management, University of Pisa, Via Ridolfi 10, 56124, Pisa, Italy
129 schema:name Department of Economics and Management, University of Pisa, Via Ridolfi 10, 56124, Pisa, Italy
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...