Doppler Compensation and Beamforming for High Mobility OFDM Transmissions in Multipath View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-05-29

AUTHORS

Kalyana Gopala , Dirk Slock

ABSTRACT

The paper focuses on the use of receive beamforming (BF) for high speed train (HST) scenario under independent Doppler for the different multipath components in a Rician Fading environment. To combat ICI, we not only null out the ICI in the frequency domain, but do a pre-processing in the time domain via frequency correction (demodulation) to maximise the signal part at the output of the FFT. To obtain a suitable demodulation frequency, location aware and location agnostic approaches are considered. Cyclic prefix (CP) based estimation method is also considered as part of location information agnostic approach. In the location-aware approach, a technique that uses both the LoS and dominant scatterer information is also proposed. The paper then provides the optimal weights for the maximisation of the SINR criterion from a theoretical and practical perspective. In the case of linear approximation of the channel variation, the ICI is shown to be a rank 1 interferer and hence can be nulled out with just 2 receiver antennas. Finally, all the methods are compared via simulations. We conclude that in an LTE OFDM system simple, low complex, location agnostic BF schemes are very effective against ICI even with just two receive antennas. More... »

PAGES

294-306

Book

TITLE

Cognitive Radio Oriented Wireless Networks

ISBN

978-3-319-40351-9
978-3-319-40352-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-40352-6_24

DOI

http://dx.doi.org/10.1007/978-3-319-40352-6_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001981987


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "EURECOM, Sophia-Antipolis, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "EURECOM, Sophia-Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gopala", 
        "givenName": "Kalyana", 
        "id": "sg:person.015772653120.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015772653120.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "EURECOM, Sophia-Antipolis, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "EURECOM, Sophia-Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Slock", 
        "givenName": "Dirk", 
        "id": "sg:person.015046645205.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015046645205.37"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-05-29", 
    "datePublishedReg": "2016-05-29", 
    "description": "The paper focuses on the use of receive beamforming (BF) for high speed train (HST) scenario under independent Doppler for the different multipath components in a Rician Fading environment. To combat ICI, we not only null out the ICI in the frequency domain, but do a pre-processing in the time domain via frequency correction (demodulation) to maximise the signal part at the output of the FFT. To obtain a suitable demodulation frequency, location aware and location agnostic approaches are considered. Cyclic prefix (CP) based estimation method is also considered as part of location information agnostic approach. In the location-aware approach, a technique that uses both the LoS and dominant scatterer information is also proposed. The paper then provides the optimal weights for the maximisation of the SINR criterion from a theoretical and practical perspective. In the case of linear approximation of the channel variation, the ICI is shown to be a rank 1 interferer and hence can be nulled out with just 2 receiver antennas. Finally, all the methods are compared via simulations. We conclude that in an LTE OFDM system simple, low complex, location agnostic BF schemes are very effective against ICI even with just two receive antennas.", 
    "editor": [
      {
        "familyName": "Noguet", 
        "givenName": "Dominique", 
        "type": "Person"
      }, 
      {
        "familyName": "Moessner", 
        "givenName": "Klaus", 
        "type": "Person"
      }, 
      {
        "familyName": "Palicot", 
        "givenName": "Jacques", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-40352-6_24", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-40351-9", 
        "978-3-319-40352-6"
      ], 
      "name": "Cognitive Radio Oriented Wireless Networks", 
      "type": "Book"
    }, 
    "keywords": [
      "LTE OFDM Systems", 
      "cyclic prefix", 
      "high speed train scenario", 
      "OFDM systems", 
      "Doppler compensation", 
      "OFDM transmission", 
      "train scenario", 
      "scatterer information", 
      "time domain", 
      "frequency domain", 
      "receive beamforming", 
      "receiver antennas", 
      "different multipath components", 
      "signal part", 
      "frequency correction", 
      "estimation method", 
      "demodulation frequency", 
      "beamforming", 
      "multipath components", 
      "SINR criterion", 
      "channel variations", 
      "location-aware approach", 
      "Rician fading environment", 
      "linear approximation", 
      "antenna", 
      "fading environment", 
      "simulations", 
      "BF scheme", 
      "multipath", 
      "FFT", 
      "method", 
      "approach", 
      "compensation", 
      "technique", 
      "output", 
      "interferers", 
      "system", 
      "receive antennas", 
      "scenarios", 
      "components", 
      "scheme", 
      "part", 
      "frequency", 
      "optimal weights", 
      "location", 
      "maximisation", 
      "environment", 
      "variation", 
      "approximation", 
      "prefix", 
      "transmission", 
      "domain", 
      "use", 
      "correction", 
      "Doppler", 
      "practical perspective", 
      "criteria", 
      "cases", 
      "LO", 
      "information", 
      "weight", 
      "ICI", 
      "agnostic approach", 
      "perspective", 
      "paper", 
      "speed train (HST) scenario", 
      "independent Doppler", 
      "suitable demodulation frequency", 
      "location agnostic approaches", 
      "location information agnostic approach", 
      "information agnostic approach", 
      "dominant scatterer information", 
      "rank 1 interferer", 
      "location agnostic BF schemes", 
      "agnostic BF schemes", 
      "High Mobility OFDM Transmissions", 
      "Mobility OFDM Transmissions"
    ], 
    "name": "Doppler Compensation and Beamforming for High Mobility OFDM Transmissions in Multipath", 
    "pagination": "294-306", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001981987"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-40352-6_24"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-40352-6_24", 
      "https://app.dimensions.ai/details/publication/pub.1001981987"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_273.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-40352-6_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40352-6_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40352-6_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40352-6_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40352-6_24'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      23 PREDICATES      102 URIs      95 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-40352-6_24 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N9720c72d3a7e4c04951f4caa87ff4987
4 schema:datePublished 2016-05-29
5 schema:datePublishedReg 2016-05-29
6 schema:description The paper focuses on the use of receive beamforming (BF) for high speed train (HST) scenario under independent Doppler for the different multipath components in a Rician Fading environment. To combat ICI, we not only null out the ICI in the frequency domain, but do a pre-processing in the time domain via frequency correction (demodulation) to maximise the signal part at the output of the FFT. To obtain a suitable demodulation frequency, location aware and location agnostic approaches are considered. Cyclic prefix (CP) based estimation method is also considered as part of location information agnostic approach. In the location-aware approach, a technique that uses both the LoS and dominant scatterer information is also proposed. The paper then provides the optimal weights for the maximisation of the SINR criterion from a theoretical and practical perspective. In the case of linear approximation of the channel variation, the ICI is shown to be a rank 1 interferer and hence can be nulled out with just 2 receiver antennas. Finally, all the methods are compared via simulations. We conclude that in an LTE OFDM system simple, low complex, location agnostic BF schemes are very effective against ICI even with just two receive antennas.
7 schema:editor Nfc53426893494911bdf56c51fbb7e7e0
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ncb1f7457105e401d8ebf1d61ae51b5fa
12 schema:keywords BF scheme
13 Doppler
14 Doppler compensation
15 FFT
16 High Mobility OFDM Transmissions
17 ICI
18 LO
19 LTE OFDM Systems
20 Mobility OFDM Transmissions
21 OFDM systems
22 OFDM transmission
23 Rician fading environment
24 SINR criterion
25 agnostic BF schemes
26 agnostic approach
27 antenna
28 approach
29 approximation
30 beamforming
31 cases
32 channel variations
33 compensation
34 components
35 correction
36 criteria
37 cyclic prefix
38 demodulation frequency
39 different multipath components
40 domain
41 dominant scatterer information
42 environment
43 estimation method
44 fading environment
45 frequency
46 frequency correction
47 frequency domain
48 high speed train scenario
49 independent Doppler
50 information
51 information agnostic approach
52 interferers
53 linear approximation
54 location
55 location agnostic BF schemes
56 location agnostic approaches
57 location information agnostic approach
58 location-aware approach
59 maximisation
60 method
61 multipath
62 multipath components
63 optimal weights
64 output
65 paper
66 part
67 perspective
68 practical perspective
69 prefix
70 rank 1 interferer
71 receive antennas
72 receive beamforming
73 receiver antennas
74 scatterer information
75 scenarios
76 scheme
77 signal part
78 simulations
79 speed train (HST) scenario
80 suitable demodulation frequency
81 system
82 technique
83 time domain
84 train scenario
85 transmission
86 use
87 variation
88 weight
89 schema:name Doppler Compensation and Beamforming for High Mobility OFDM Transmissions in Multipath
90 schema:pagination 294-306
91 schema:productId N8ac87a39a3f44713ae9b7805833cfbc1
92 Ne0b9c13e4e2b41a9a33a851730698f6a
93 schema:publisher N3b25cbdaed6845579ec19fd7cac2b6aa
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001981987
95 https://doi.org/10.1007/978-3-319-40352-6_24
96 schema:sdDatePublished 2022-01-01T19:16
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher Nac4b28d1198f4bdc8bda0c750c66a7b2
99 schema:url https://doi.org/10.1007/978-3-319-40352-6_24
100 sgo:license sg:explorer/license/
101 sgo:sdDataset chapters
102 rdf:type schema:Chapter
103 N1c8f2f8017434ef3a1bf48c764a8da7d schema:familyName Moessner
104 schema:givenName Klaus
105 rdf:type schema:Person
106 N361810fa7add420291fb065e83f4e365 rdf:first sg:person.015046645205.37
107 rdf:rest rdf:nil
108 N3b25cbdaed6845579ec19fd7cac2b6aa schema:name Springer Nature
109 rdf:type schema:Organisation
110 N48537f15ff8d4087b01914a0607a734c schema:familyName Palicot
111 schema:givenName Jacques
112 rdf:type schema:Person
113 N814640e0ecbc48b9af64686e2af0817b schema:familyName Noguet
114 schema:givenName Dominique
115 rdf:type schema:Person
116 N83c9c10ba4624e9b9f065d970946ee0a rdf:first N1c8f2f8017434ef3a1bf48c764a8da7d
117 rdf:rest Nb0542a8cd1c344718513950b64c4bbce
118 N8ac87a39a3f44713ae9b7805833cfbc1 schema:name doi
119 schema:value 10.1007/978-3-319-40352-6_24
120 rdf:type schema:PropertyValue
121 N9720c72d3a7e4c04951f4caa87ff4987 rdf:first sg:person.015772653120.28
122 rdf:rest N361810fa7add420291fb065e83f4e365
123 Nac4b28d1198f4bdc8bda0c750c66a7b2 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Nb0542a8cd1c344718513950b64c4bbce rdf:first N48537f15ff8d4087b01914a0607a734c
126 rdf:rest rdf:nil
127 Ncb1f7457105e401d8ebf1d61ae51b5fa schema:isbn 978-3-319-40351-9
128 978-3-319-40352-6
129 schema:name Cognitive Radio Oriented Wireless Networks
130 rdf:type schema:Book
131 Ne0b9c13e4e2b41a9a33a851730698f6a schema:name dimensions_id
132 schema:value pub.1001981987
133 rdf:type schema:PropertyValue
134 Nfc53426893494911bdf56c51fbb7e7e0 rdf:first N814640e0ecbc48b9af64686e2af0817b
135 rdf:rest N83c9c10ba4624e9b9f065d970946ee0a
136 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
137 schema:name Engineering
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
140 schema:name Electrical and Electronic Engineering
141 rdf:type schema:DefinedTerm
142 sg:person.015046645205.37 schema:affiliation grid-institutes:grid.28848.3e
143 schema:familyName Slock
144 schema:givenName Dirk
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015046645205.37
146 rdf:type schema:Person
147 sg:person.015772653120.28 schema:affiliation grid-institutes:grid.28848.3e
148 schema:familyName Gopala
149 schema:givenName Kalyana
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015772653120.28
151 rdf:type schema:Person
152 grid-institutes:grid.28848.3e schema:alternateName EURECOM, Sophia-Antipolis, France
153 schema:name EURECOM, Sophia-Antipolis, France
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...