2016-07-16
AUTHORSAntonio Mucherino , Stefka Fidanova , Maria Ganzha
ABSTRACTMeta-heuristicsaregeneral-purpose methods for global optimization, which take generally inspiration from natural behaviors and phenomena. Among the others, Ant Colony Optimization (ACO) received particular interest in the last years. In this work, we introduce the environment in ACO, for the meta-heuristic to perform a more realistic simulation of the ants’ behavior. Computational experiments on instances of the GPS Surveying Problem (GSP) show that the introduction of the environment in ACO allows us to improve the quality of obtained solutions. More... »
PAGES147-158
Recent Advances in Computational Optimization
ISBN
978-3-319-40131-7
978-3-319-40132-4
http://scigraph.springernature.com/pub.10.1007/978-3-319-40132-4_9
DOIhttp://dx.doi.org/10.1007/978-3-319-40132-4_9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1019154870
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "IRISA, University of Rennes 1, Rennes, France",
"id": "http://www.grid.ac/institutes/grid.420225.3",
"name": [
"IRISA, University of Rennes 1, Rennes, France"
],
"type": "Organization"
},
"familyName": "Mucherino",
"givenName": "Antonio",
"id": "sg:person.014026074116.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014026074116.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "BAS, University of Sofia, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/None",
"name": [
"BAS, University of Sofia, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Fidanova",
"givenName": "Stefka",
"id": "sg:person.011173106320.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "SRI, Polish Academy of Science, Warsaw, Poland",
"id": "http://www.grid.ac/institutes/grid.413454.3",
"name": [
"SRI, Polish Academy of Science, Warsaw, Poland"
],
"type": "Organization"
},
"familyName": "Ganzha",
"givenName": "Maria",
"id": "sg:person.012054343730.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012054343730.36"
],
"type": "Person"
}
],
"datePublished": "2016-07-16",
"datePublishedReg": "2016-07-16",
"description": "Meta-heuristicsaregeneral-purpose methods for global optimization, which take generally inspiration from natural behaviors and phenomena. Among the others, Ant Colony Optimization (ACO) received particular interest in the last years. In this work, we introduce the environment in ACO, for the meta-heuristic to perform a more realistic simulation of the ants\u2019 behavior. Computational experiments on instances of the GPS Surveying Problem (GSP) show that the introduction of the environment in ACO allows us to improve the quality of obtained solutions.",
"editor": [
{
"familyName": "Fidanova",
"givenName": "Stefka",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-40132-4_9",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-40131-7",
"978-3-319-40132-4"
],
"name": "Recent Advances in Computational Optimization",
"type": "Book"
},
"keywords": [
"Ant Colony Optimization",
"colony optimization",
"global optimization",
"computational experiments",
"purpose method",
"surveying problems",
"GPS Surveying Problem",
"optimization",
"realistic simulation",
"particular interest",
"simulations",
"problem",
"solution",
"natural behavior",
"behavior",
"phenomenon",
"instances",
"last years",
"work",
"experiments",
"interest",
"introduction",
"environment",
"inspiration",
"ants",
"quality",
"years",
"method"
],
"name": "Introducing the Environment in Ant Colony Optimization",
"pagination": "147-158",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1019154870"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-40132-4_9"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-40132-4_9",
"https://app.dimensions.ai/details/publication/pub.1019154870"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:55",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_67.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-40132-4_9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40132-4_9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40132-4_9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40132-4_9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40132-4_9'
This table displays all metadata directly associated to this object as RDF triples.
108 TRIPLES
23 PREDICATES
53 URIs
46 LITERALS
7 BLANK NODES