InterCriteria Analysis of Genetic Algorithms Performance View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-07-16

AUTHORS

Olympia Roeva , Peter Vassilev , Stefka Fidanova , Marcin Paprzycki

ABSTRACT

In thispaperweapply InterCriteria Analysis (ICrA) approach based on the apparatus of Index Matrices and Intuitionistic Fuzzy Sets. The main idea is to use ICrA to establish the existing relations and dependencies of defined parameters in a non-linear model of an E. coli fed-batch cultivation process. We perform a series of model identification procedures applying Genetic Algorithms (GAs). We proposed a schema of ICrA of ICrA results to examine the obtained model identification results. The discussion about existing relations and dependencies is performed according to criteria defined in terms of ICrA. We consider as ICrA criteria model parameters and GAs outcomes on the one hand, and 14 differently tuned GAs on the other. Based on the results, we observe the mutual relations between model parameters and GAs outcomes, such as computation time and objective function value. Moreover, some conclusions about the preferred tuned GAs for the considered model parameter identification in terms of achieved accuracy for given computation time are presented. More... »

PAGES

235-260

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-40132-4_14

DOI

http://dx.doi.org/10.1007/978-3-319-40132-4_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024609581


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.493309.4", 
          "name": [
            "Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roeva", 
        "givenName": "Olympia", 
        "id": "sg:person.015745057111.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.493309.4", 
          "name": [
            "Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vassilev", 
        "givenName": "Peter", 
        "id": "sg:person.0743742264.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743742264.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.410344.6", 
          "name": [
            "Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "id": "sg:person.011173106320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "System Research Institute Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland", 
          "id": "http://www.grid.ac/institutes/grid.466252.1", 
          "name": [
            "System Research Institute Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paprzycki", 
        "givenName": "Marcin", 
        "id": "sg:person.014761523751.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014761523751.31"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-07-16", 
    "datePublishedReg": "2016-07-16", 
    "description": "In thispaperweapply InterCriteria Analysis (ICrA) approach based on the apparatus of Index Matrices and Intuitionistic Fuzzy Sets. The main idea is to use ICrA to establish the existing relations and dependencies of defined parameters in a non-linear model of an E. coli fed-batch cultivation process. We perform a series of model identification procedures applying Genetic Algorithms (GAs). We proposed a schema of ICrA of ICrA results to examine the obtained model identification results. The discussion about existing relations and dependencies is performed according to criteria defined in terms of ICrA. We consider as ICrA criteria model parameters and GAs outcomes on the one hand, and 14 differently tuned GAs on the other. Based on the results, we observe the mutual relations between model parameters and GAs outcomes, such as computation time and objective function value. Moreover, some conclusions about the preferred tuned GAs for the considered model parameter identification in terms of achieved accuracy for given computation time are presented.", 
    "editor": [
      {
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-40132-4_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-40131-7", 
        "978-3-319-40132-4"
      ], 
      "name": "Recent Advances in Computational Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "genetic algorithm", 
      "computation time", 
      "InterCriteria Analysis Approach", 
      "genetic algorithm performance", 
      "intuitionistic fuzzy sets", 
      "objective function value", 
      "algorithm performance", 
      "fuzzy sets", 
      "main idea", 
      "index matrix", 
      "InterCriteria Analysis", 
      "coli fed-batch cultivation process", 
      "ICrA", 
      "function values", 
      "model parameters", 
      "identification results", 
      "model parameter identification", 
      "analysis approach", 
      "algorithm", 
      "schema", 
      "dependency", 
      "parameter identification", 
      "accuracy", 
      "set", 
      "performance", 
      "model identification procedure", 
      "identification procedure", 
      "idea", 
      "non-linear model", 
      "mutual relations", 
      "terms", 
      "time", 
      "results", 
      "fed-batch cultivation process", 
      "model", 
      "parameters", 
      "process", 
      "hand", 
      "model identification results", 
      "identification", 
      "matrix", 
      "cultivation process", 
      "discussion", 
      "criteria", 
      "relation", 
      "analysis", 
      "procedure", 
      "values", 
      "series", 
      "approach", 
      "outcomes", 
      "conclusion", 
      "apparatus"
    ], 
    "name": "InterCriteria Analysis of Genetic Algorithms Performance", 
    "pagination": "235-260", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024609581"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-40132-4_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-40132-4_14", 
      "https://app.dimensions.ai/details/publication/pub.1024609581"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_369.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-40132-4_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40132-4_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40132-4_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40132-4_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-40132-4_14'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      78 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-40132-4_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N45cef9467a7947f598fc39f7830bc536
4 schema:datePublished 2016-07-16
5 schema:datePublishedReg 2016-07-16
6 schema:description In thispaperweapply InterCriteria Analysis (ICrA) approach based on the apparatus of Index Matrices and Intuitionistic Fuzzy Sets. The main idea is to use ICrA to establish the existing relations and dependencies of defined parameters in a non-linear model of an E. coli fed-batch cultivation process. We perform a series of model identification procedures applying Genetic Algorithms (GAs). We proposed a schema of ICrA of ICrA results to examine the obtained model identification results. The discussion about existing relations and dependencies is performed according to criteria defined in terms of ICrA. We consider as ICrA criteria model parameters and GAs outcomes on the one hand, and 14 differently tuned GAs on the other. Based on the results, we observe the mutual relations between model parameters and GAs outcomes, such as computation time and objective function value. Moreover, some conclusions about the preferred tuned GAs for the considered model parameter identification in terms of achieved accuracy for given computation time are presented.
7 schema:editor N898e2c5cdcae43b792983d37e3736022
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N7e5e136548e84eb7a4584c301e97b437
12 schema:keywords ICrA
13 InterCriteria Analysis
14 InterCriteria Analysis Approach
15 accuracy
16 algorithm
17 algorithm performance
18 analysis
19 analysis approach
20 apparatus
21 approach
22 coli fed-batch cultivation process
23 computation time
24 conclusion
25 criteria
26 cultivation process
27 dependency
28 discussion
29 fed-batch cultivation process
30 function values
31 fuzzy sets
32 genetic algorithm
33 genetic algorithm performance
34 hand
35 idea
36 identification
37 identification procedure
38 identification results
39 index matrix
40 intuitionistic fuzzy sets
41 main idea
42 matrix
43 model
44 model identification procedure
45 model identification results
46 model parameter identification
47 model parameters
48 mutual relations
49 non-linear model
50 objective function value
51 outcomes
52 parameter identification
53 parameters
54 performance
55 procedure
56 process
57 relation
58 results
59 schema
60 series
61 set
62 terms
63 time
64 values
65 schema:name InterCriteria Analysis of Genetic Algorithms Performance
66 schema:pagination 235-260
67 schema:productId N9a57b45a9ee34b23936b6b56f27139b7
68 Ncf487c70305648ed86f3270b4fe65e0d
69 schema:publisher N1a81f9e5ec844fbd8797f9740b9209b7
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024609581
71 https://doi.org/10.1007/978-3-319-40132-4_14
72 schema:sdDatePublished 2022-05-10T10:49
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N2d8d59c724d24680a230a07e2bb0265f
75 schema:url https://doi.org/10.1007/978-3-319-40132-4_14
76 sgo:license sg:explorer/license/
77 sgo:sdDataset chapters
78 rdf:type schema:Chapter
79 N1a81f9e5ec844fbd8797f9740b9209b7 schema:name Springer Nature
80 rdf:type schema:Organisation
81 N2d8d59c724d24680a230a07e2bb0265f schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N42be3df17b47409b93bf398a350abe03 schema:familyName Fidanova
84 schema:givenName Stefka
85 rdf:type schema:Person
86 N45cef9467a7947f598fc39f7830bc536 rdf:first sg:person.015745057111.08
87 rdf:rest N79aeee06625e431bafe0ed6f3a508be2
88 N79aeee06625e431bafe0ed6f3a508be2 rdf:first sg:person.0743742264.36
89 rdf:rest N81a998ae6a834265a842a557aebd76e3
90 N7e5e136548e84eb7a4584c301e97b437 schema:isbn 978-3-319-40131-7
91 978-3-319-40132-4
92 schema:name Recent Advances in Computational Optimization
93 rdf:type schema:Book
94 N81a998ae6a834265a842a557aebd76e3 rdf:first sg:person.011173106320.18
95 rdf:rest N8f583e9ef7a2422c978d87fb62d1c3bb
96 N898e2c5cdcae43b792983d37e3736022 rdf:first N42be3df17b47409b93bf398a350abe03
97 rdf:rest rdf:nil
98 N8f583e9ef7a2422c978d87fb62d1c3bb rdf:first sg:person.014761523751.31
99 rdf:rest rdf:nil
100 N9a57b45a9ee34b23936b6b56f27139b7 schema:name doi
101 schema:value 10.1007/978-3-319-40132-4_14
102 rdf:type schema:PropertyValue
103 Ncf487c70305648ed86f3270b4fe65e0d schema:name dimensions_id
104 schema:value pub.1024609581
105 rdf:type schema:PropertyValue
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
110 schema:name Artificial Intelligence and Image Processing
111 rdf:type schema:DefinedTerm
112 sg:person.011173106320.18 schema:affiliation grid-institutes:grid.410344.6
113 schema:familyName Fidanova
114 schema:givenName Stefka
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18
116 rdf:type schema:Person
117 sg:person.014761523751.31 schema:affiliation grid-institutes:grid.466252.1
118 schema:familyName Paprzycki
119 schema:givenName Marcin
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014761523751.31
121 rdf:type schema:Person
122 sg:person.015745057111.08 schema:affiliation grid-institutes:grid.493309.4
123 schema:familyName Roeva
124 schema:givenName Olympia
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08
126 rdf:type schema:Person
127 sg:person.0743742264.36 schema:affiliation grid-institutes:grid.493309.4
128 schema:familyName Vassilev
129 schema:givenName Peter
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743742264.36
131 rdf:type schema:Person
132 grid-institutes:grid.410344.6 schema:alternateName Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria
133 schema:name Institute of Information and Communication Technology, Bulgarian Academy of Sciences, Sofia, Bulgaria
134 rdf:type schema:Organization
135 grid-institutes:grid.466252.1 schema:alternateName System Research Institute Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland
136 schema:name System Research Institute Polish Academy of Sciences, Warsaw and Management Academy, Warsaw, Poland
137 rdf:type schema:Organization
138 grid-institutes:grid.493309.4 schema:alternateName Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
139 schema:name Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...