Ontology type: schema:Chapter
2016-05-27
AUTHORSZhi-Zhong Chen , Youta Harada , Eita Machida , Fei Guo , Lusheng Wang
ABSTRACTScaffolding is one of the main stages in genome assembly. During this stage, we want to merge contigs assembled from the paired-end reads into bigger chains called scaffolds. For this purpose, the following graph-theoretical problem has been proposed: Given an edge-weighted complete graph G and a perfect matching D of G, we wish to find a Hamiltonian path P in G such that all edges of D appear in P and the total weight of edges in P but not in D is maximized. This problem is NP-hard and the previously best polynomial-time approximation algorithm for it achieves a ratio of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{2}}$$\end{document}. In this paper, we design a new polynomial-time approximation algorithm achieving a ratio of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{5-5{\epsilon }}{9-8{\epsilon }}}$$\end{document} for any constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< {\epsilon } < 1$$\end{document}. Several generalizations of the problem have also been introduced in the literature and we present polynomial-time approximation algorithms for them that achieve better approximation ratios than the previous bests. In particular, one of the algorithms answers an open question. More... »
PAGES17-28
Frontiers in Algorithmics
ISBN
978-3-319-39816-7
978-3-319-39817-4
http://scigraph.springernature.com/pub.10.1007/978-3-319-39817-4_3
DOIhttp://dx.doi.org/10.1007/978-3-319-39817-4_3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1022958113
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Division of Information System Design, Tokyo Denki University, 350-0394, Saitama, Hatoyama, Japan",
"id": "http://www.grid.ac/institutes/grid.412773.4",
"name": [
"Division of Information System Design, Tokyo Denki University, 350-0394, Saitama, Hatoyama, Japan"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Zhi-Zhong",
"id": "sg:person.015654265661.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Division of Information System Design, Tokyo Denki University, 350-0394, Saitama, Hatoyama, Japan",
"id": "http://www.grid.ac/institutes/grid.412773.4",
"name": [
"Division of Information System Design, Tokyo Denki University, 350-0394, Saitama, Hatoyama, Japan"
],
"type": "Organization"
},
"familyName": "Harada",
"givenName": "Youta",
"id": "sg:person.011526465541.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526465541.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Division of Information System Design, Tokyo Denki University, 350-0394, Saitama, Hatoyama, Japan",
"id": "http://www.grid.ac/institutes/grid.412773.4",
"name": [
"Division of Information System Design, Tokyo Denki University, 350-0394, Saitama, Hatoyama, Japan"
],
"type": "Organization"
},
"familyName": "Machida",
"givenName": "Eita",
"id": "sg:person.014542220455.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014542220455.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Computer Science and Technology, Tianjin University, Tianjin, China",
"id": "http://www.grid.ac/institutes/grid.33763.32",
"name": [
"School of Computer Science and Technology, Tianjin University, Tianjin, China"
],
"type": "Organization"
},
"familyName": "Guo",
"givenName": "Fei",
"id": "sg:person.0776100512.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776100512.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Lusheng",
"id": "sg:person.01105113721.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105113721.52"
],
"type": "Person"
}
],
"datePublished": "2016-05-27",
"datePublishedReg": "2016-05-27",
"description": "Scaffolding is one of the main stages in genome assembly. During this stage, we want to merge contigs assembled from the paired-end reads into bigger chains called scaffolds. For this purpose, the following graph-theoretical problem has been proposed: Given an edge-weighted complete graph G and a perfect matching D of G, we wish to find a Hamiltonian path P in G such that all edges of D appear in P and the total weight of edges in P but not in D is maximized. This problem is NP-hard and the previously best polynomial-time approximation algorithm for it achieves a ratio of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\frac{1}{2}}$$\\end{document}. In this paper, we design a new polynomial-time approximation algorithm achieving a ratio of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\frac{5-5{\\epsilon }}{9-8{\\epsilon }}}$$\\end{document} for any constant \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$0< {\\epsilon } < 1$$\\end{document}. Several generalizations of the problem have also been introduced in the literature and we present polynomial-time approximation algorithms for them that achieve better approximation ratios than the previous bests. In particular, one of the algorithms answers an open question.",
"editor": [
{
"familyName": "Zhu",
"givenName": "Daming",
"type": "Person"
},
{
"familyName": "Bereg",
"givenName": "Sergey",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-39817-4_3",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-39816-7",
"978-3-319-39817-4"
],
"name": "Frontiers in Algorithmics",
"type": "Book"
},
"keywords": [
"polynomial-time approximation algorithm",
"approximation algorithm",
"best polynomial-time approximation algorithm",
"graph theoretical problem",
"new polynomial-time approximation algorithm",
"best approximation algorithm",
"best approximation ratio",
"Hamiltonian path P",
"Scaffolding Problem",
"previous bests",
"approximation ratio",
"graph G",
"big chains",
"path P",
"algorithm",
"problem",
"complete graph G",
"open question",
"generalization",
"edge",
"NPs",
"total weight",
"main stages",
"BEST",
"ratio",
"chain",
"literature",
"paired-end reads",
"questions",
"purpose",
"genome assembly",
"reads",
"stage",
"weight",
"scaffolding",
"assembly",
"contigs",
"scaffolds",
"paper"
],
"name": "Better Approximation Algorithms for Scaffolding Problems",
"pagination": "17-28",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1022958113"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-39817-4_3"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-39817-4_3",
"https://app.dimensions.ai/details/publication/pub.1022958113"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:48",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_332.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-39817-4_3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-39817-4_3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-39817-4_3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-39817-4_3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-39817-4_3'
This table displays all metadata directly associated to this object as RDF triples.
138 TRIPLES
23 PREDICATES
64 URIs
57 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-39817-4_3 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | N3437067f3385469e9db0beb063323d7c |
4 | ″ | schema:datePublished | 2016-05-27 |
5 | ″ | schema:datePublishedReg | 2016-05-27 |
6 | ″ | schema:description | Scaffolding is one of the main stages in genome assembly. During this stage, we want to merge contigs assembled from the paired-end reads into bigger chains called scaffolds. For this purpose, the following graph-theoretical problem has been proposed: Given an edge-weighted complete graph G and a perfect matching D of G, we wish to find a Hamiltonian path P in G such that all edges of D appear in P and the total weight of edges in P but not in D is maximized. This problem is NP-hard and the previously best polynomial-time approximation algorithm for it achieves a ratio of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{2}}$$\end{document}. In this paper, we design a new polynomial-time approximation algorithm achieving a ratio of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{5-5{\epsilon }}{9-8{\epsilon }}}$$\end{document} for any constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< {\epsilon } < 1$$\end{document}. Several generalizations of the problem have also been introduced in the literature and we present polynomial-time approximation algorithms for them that achieve better approximation ratios than the previous bests. In particular, one of the algorithms answers an open question. |
7 | ″ | schema:editor | N25a633ea8bf343ecafdfdc49060b14a5 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N48e253d494634b18b89be5592cff065e |
12 | ″ | schema:keywords | BEST |
13 | ″ | ″ | Hamiltonian path P |
14 | ″ | ″ | NPs |
15 | ″ | ″ | Scaffolding Problem |
16 | ″ | ″ | algorithm |
17 | ″ | ″ | approximation algorithm |
18 | ″ | ″ | approximation ratio |
19 | ″ | ″ | assembly |
20 | ″ | ″ | best approximation algorithm |
21 | ″ | ″ | best approximation ratio |
22 | ″ | ″ | best polynomial-time approximation algorithm |
23 | ″ | ″ | big chains |
24 | ″ | ″ | chain |
25 | ″ | ″ | complete graph G |
26 | ″ | ″ | contigs |
27 | ″ | ″ | edge |
28 | ″ | ″ | generalization |
29 | ″ | ″ | genome assembly |
30 | ″ | ″ | graph G |
31 | ″ | ″ | graph theoretical problem |
32 | ″ | ″ | literature |
33 | ″ | ″ | main stages |
34 | ″ | ″ | new polynomial-time approximation algorithm |
35 | ″ | ″ | open question |
36 | ″ | ″ | paired-end reads |
37 | ″ | ″ | paper |
38 | ″ | ″ | path P |
39 | ″ | ″ | polynomial-time approximation algorithm |
40 | ″ | ″ | previous bests |
41 | ″ | ″ | problem |
42 | ″ | ″ | purpose |
43 | ″ | ″ | questions |
44 | ″ | ″ | ratio |
45 | ″ | ″ | reads |
46 | ″ | ″ | scaffolding |
47 | ″ | ″ | scaffolds |
48 | ″ | ″ | stage |
49 | ″ | ″ | total weight |
50 | ″ | ″ | weight |
51 | ″ | schema:name | Better Approximation Algorithms for Scaffolding Problems |
52 | ″ | schema:pagination | 17-28 |
53 | ″ | schema:productId | N3cd20288e3ca41e692278d263f98a573 |
54 | ″ | ″ | N4f80a6c1b1d5478fa73b2bdbf7b96f85 |
55 | ″ | schema:publisher | Nba4a99d1405948e8a4e28c7717075241 |
56 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022958113 |
57 | ″ | ″ | https://doi.org/10.1007/978-3-319-39817-4_3 |
58 | ″ | schema:sdDatePublished | 2022-05-10T10:48 |
59 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
60 | ″ | schema:sdPublisher | N6ba737b9f2254ef8bcd661ec22205bc0 |
61 | ″ | schema:url | https://doi.org/10.1007/978-3-319-39817-4_3 |
62 | ″ | sgo:license | sg:explorer/license/ |
63 | ″ | sgo:sdDataset | chapters |
64 | ″ | rdf:type | schema:Chapter |
65 | N206a0686e5a04157a11f1cc4a426fc8f | rdf:first | sg:person.01105113721.52 |
66 | ″ | rdf:rest | rdf:nil |
67 | N25a633ea8bf343ecafdfdc49060b14a5 | rdf:first | N53c36684add34f2cb103df143852b44c |
68 | ″ | rdf:rest | Ndf34ec349d9147f8a94b8dc9cb05c5bc |
69 | N3437067f3385469e9db0beb063323d7c | rdf:first | sg:person.015654265661.98 |
70 | ″ | rdf:rest | Nfa0fe59ba3f844d3adb603bda17c6f3e |
71 | N3cd20288e3ca41e692278d263f98a573 | schema:name | doi |
72 | ″ | schema:value | 10.1007/978-3-319-39817-4_3 |
73 | ″ | rdf:type | schema:PropertyValue |
74 | N48e253d494634b18b89be5592cff065e | schema:isbn | 978-3-319-39816-7 |
75 | ″ | ″ | 978-3-319-39817-4 |
76 | ″ | schema:name | Frontiers in Algorithmics |
77 | ″ | rdf:type | schema:Book |
78 | N4f80a6c1b1d5478fa73b2bdbf7b96f85 | schema:name | dimensions_id |
79 | ″ | schema:value | pub.1022958113 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | N53c36684add34f2cb103df143852b44c | schema:familyName | Zhu |
82 | ″ | schema:givenName | Daming |
83 | ″ | rdf:type | schema:Person |
84 | N6ba737b9f2254ef8bcd661ec22205bc0 | schema:name | Springer Nature - SN SciGraph project |
85 | ″ | rdf:type | schema:Organization |
86 | N7e69832da0bf44f396ca309b28fa7eef | schema:familyName | Bereg |
87 | ″ | schema:givenName | Sergey |
88 | ″ | rdf:type | schema:Person |
89 | Na30d2f8767584660827d642529780590 | rdf:first | sg:person.014542220455.48 |
90 | ″ | rdf:rest | Nc5426054fd93436aafa60cb947935afc |
91 | Nba4a99d1405948e8a4e28c7717075241 | schema:name | Springer Nature |
92 | ″ | rdf:type | schema:Organisation |
93 | Nc5426054fd93436aafa60cb947935afc | rdf:first | sg:person.0776100512.16 |
94 | ″ | rdf:rest | N206a0686e5a04157a11f1cc4a426fc8f |
95 | Ndf34ec349d9147f8a94b8dc9cb05c5bc | rdf:first | N7e69832da0bf44f396ca309b28fa7eef |
96 | ″ | rdf:rest | rdf:nil |
97 | Nfa0fe59ba3f844d3adb603bda17c6f3e | rdf:first | sg:person.011526465541.54 |
98 | ″ | rdf:rest | Na30d2f8767584660827d642529780590 |
99 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Information and Computing Sciences |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Computation Theory and Mathematics |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | sg:person.01105113721.52 | schema:affiliation | grid-institutes:None |
106 | ″ | schema:familyName | Wang |
107 | ″ | schema:givenName | Lusheng |
108 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105113721.52 |
109 | ″ | rdf:type | schema:Person |
110 | sg:person.011526465541.54 | schema:affiliation | grid-institutes:grid.412773.4 |
111 | ″ | schema:familyName | Harada |
112 | ″ | schema:givenName | Youta |
113 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011526465541.54 |
114 | ″ | rdf:type | schema:Person |
115 | sg:person.014542220455.48 | schema:affiliation | grid-institutes:grid.412773.4 |
116 | ″ | schema:familyName | Machida |
117 | ″ | schema:givenName | Eita |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014542220455.48 |
119 | ″ | rdf:type | schema:Person |
120 | sg:person.015654265661.98 | schema:affiliation | grid-institutes:grid.412773.4 |
121 | ″ | schema:familyName | Chen |
122 | ″ | schema:givenName | Zhi-Zhong |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98 |
124 | ″ | rdf:type | schema:Person |
125 | sg:person.0776100512.16 | schema:affiliation | grid-institutes:grid.33763.32 |
126 | ″ | schema:familyName | Guo |
127 | ″ | schema:givenName | Fei |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776100512.16 |
129 | ″ | rdf:type | schema:Person |
130 | grid-institutes:None | schema:alternateName | Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR |
131 | ″ | schema:name | Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR |
132 | ″ | rdf:type | schema:Organization |
133 | grid-institutes:grid.33763.32 | schema:alternateName | School of Computer Science and Technology, Tianjin University, Tianjin, China |
134 | ″ | schema:name | School of Computer Science and Technology, Tianjin University, Tianjin, China |
135 | ″ | rdf:type | schema:Organization |
136 | grid-institutes:grid.412773.4 | schema:alternateName | Division of Information System Design, Tokyo Denki University, 350-0394, Saitama, Hatoyama, Japan |
137 | ″ | schema:name | Division of Information System Design, Tokyo Denki University, 350-0394, Saitama, Hatoyama, Japan |
138 | ″ | rdf:type | schema:Organization |