Dispersive Shock Waves: From Water Waves to Nonlinear Optics View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016-09-20

AUTHORS

Matteo Conforti , Stefano Trillo

ABSTRACT

Dispersive shock waves are strongly oscillating wave trains that spontaneously form and expand thanks to the action of weak dispersion, which contrasts the tendency, driven by the nonlinearity, to develop a gradient catastrophe. Here we review the basic concepts and recent progresses made in the description of such nonlinear waves, both in terms of experimental results and modelling. In particular, we discuss the formation of dispersive shocks in shallow water, which can be described in terms of Korteweg-de Vries or Whitham nonlocal equations. We contrast such results with those obtained in the field of nonlinear optics, described in terms of local or nonlocal nonlinear Schrödinger equations. Finally we show that a dispersive shock propagating under the action of small perturbations can radiate. A perturbative approach allows for the accurate prediction of the radiated frequencies. More... »

PAGES

337-367

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-39214-1_11

DOI

http://dx.doi.org/10.1007/978-3-319-39214-1_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045164164


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Mol\u00e9cules, F-59000, Lille, France", 
          "id": "http://www.grid.ac/institutes/grid.503422.2", 
          "name": [
            "Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Mol\u00e9cules, F-59000, Lille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conforti", 
        "givenName": "Matteo", 
        "id": "sg:person.0764653251.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764653251.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Ingegneria, Universit\u00e1 di Ferrara, Via Saragat 1, 44122, Ferrara, Italy", 
          "id": "http://www.grid.ac/institutes/grid.8484.0", 
          "name": [
            "Dipartimento di Ingegneria, Universit\u00e1 di Ferrara, Via Saragat 1, 44122, Ferrara, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trillo", 
        "givenName": "Stefano", 
        "id": "sg:person.01242414260.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242414260.33"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-09-20", 
    "datePublishedReg": "2016-09-20", 
    "description": "Dispersive shock waves are strongly oscillating wave trains that spontaneously form and expand thanks to the action of weak dispersion, which contrasts the tendency, driven by the nonlinearity, to develop a gradient catastrophe. Here we review the basic concepts and recent progresses made in the description of such nonlinear waves, both in terms of experimental results and modelling. In particular, we discuss the formation of dispersive shocks in shallow water, which can be described in terms of Korteweg-de Vries or Whitham nonlocal equations. We contrast such results with those obtained in the field of nonlinear optics, described in terms of local or nonlocal nonlinear Schr\u00f6dinger equations. Finally we show that a dispersive shock propagating under the action of small perturbations can radiate. A perturbative approach allows for the accurate prediction of the radiated frequencies.", 
    "editor": [
      {
        "familyName": "Onorato", 
        "givenName": "Miguel", 
        "type": "Person"
      }, 
      {
        "familyName": "Resitori", 
        "givenName": "Stefania", 
        "type": "Person"
      }, 
      {
        "familyName": "Baronio", 
        "givenName": "Fabio", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-39214-1_11", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-39212-7", 
        "978-3-319-39214-1"
      ], 
      "name": "Rogue and Shock Waves in Nonlinear Dispersive Media", 
      "type": "Book"
    }, 
    "keywords": [
      "dispersive shocks", 
      "nonlocal nonlinear Schr\u00f6dinger equation", 
      "such nonlinear waves", 
      "Korteweg-de Vries", 
      "dispersive shock waves", 
      "nonlinear Schr\u00f6dinger equation", 
      "nonlinear optics", 
      "gradient catastrophe", 
      "nonlinear waves", 
      "nonlocal equations", 
      "Schr\u00f6dinger equation", 
      "small perturbations", 
      "perturbative approach", 
      "water waves", 
      "weak dispersion", 
      "wave train", 
      "equations", 
      "shock waves", 
      "waves", 
      "basic concepts", 
      "accurate prediction", 
      "Vries", 
      "optics", 
      "nonlinearity", 
      "Such results", 
      "experimental results", 
      "terms", 
      "shallow water", 
      "perturbations", 
      "recent progress", 
      "modelling", 
      "field", 
      "description", 
      "dispersion", 
      "prediction", 
      "train", 
      "results", 
      "approach", 
      "thanks", 
      "catastrophe", 
      "concept", 
      "frequency", 
      "shock", 
      "formation", 
      "progress", 
      "action", 
      "water", 
      "tendency"
    ], 
    "name": "Dispersive Shock Waves: From Water Waves to Nonlinear Optics", 
    "pagination": "337-367", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045164164"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-39214-1_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-39214-1_11", 
      "https://app.dimensions.ai/details/publication/pub.1045164164"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_349.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-39214-1_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-39214-1_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-39214-1_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-39214-1_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-39214-1_11'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      22 PREDICATES      72 URIs      65 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-39214-1_11 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N82981ea525b641c59f5e188d519973f2
4 schema:datePublished 2016-09-20
5 schema:datePublishedReg 2016-09-20
6 schema:description Dispersive shock waves are strongly oscillating wave trains that spontaneously form and expand thanks to the action of weak dispersion, which contrasts the tendency, driven by the nonlinearity, to develop a gradient catastrophe. Here we review the basic concepts and recent progresses made in the description of such nonlinear waves, both in terms of experimental results and modelling. In particular, we discuss the formation of dispersive shocks in shallow water, which can be described in terms of Korteweg-de Vries or Whitham nonlocal equations. We contrast such results with those obtained in the field of nonlinear optics, described in terms of local or nonlocal nonlinear Schrödinger equations. Finally we show that a dispersive shock propagating under the action of small perturbations can radiate. A perturbative approach allows for the accurate prediction of the radiated frequencies.
7 schema:editor Na7aa00cee665490ab0eb98805c8ad685
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N9db8fc5f03504a7da26d6c160569fdf5
11 schema:keywords Korteweg-de Vries
12 Schrödinger equation
13 Such results
14 Vries
15 accurate prediction
16 action
17 approach
18 basic concepts
19 catastrophe
20 concept
21 description
22 dispersion
23 dispersive shock waves
24 dispersive shocks
25 equations
26 experimental results
27 field
28 formation
29 frequency
30 gradient catastrophe
31 modelling
32 nonlinear Schrödinger equation
33 nonlinear optics
34 nonlinear waves
35 nonlinearity
36 nonlocal equations
37 nonlocal nonlinear Schrödinger equation
38 optics
39 perturbations
40 perturbative approach
41 prediction
42 progress
43 recent progress
44 results
45 shallow water
46 shock
47 shock waves
48 small perturbations
49 such nonlinear waves
50 tendency
51 terms
52 thanks
53 train
54 water
55 water waves
56 wave train
57 waves
58 weak dispersion
59 schema:name Dispersive Shock Waves: From Water Waves to Nonlinear Optics
60 schema:pagination 337-367
61 schema:productId Nbe649f54d93341369b47877e5727f088
62 Nf31e39df89b34450805dedb8da951fa9
63 schema:publisher N89bf56a4c07a472ab4ec6d77a85e9cf0
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045164164
65 https://doi.org/10.1007/978-3-319-39214-1_11
66 schema:sdDatePublished 2022-12-01T06:52
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N96d99efa90b04c9ea19491cd94aafc48
69 schema:url https://doi.org/10.1007/978-3-319-39214-1_11
70 sgo:license sg:explorer/license/
71 sgo:sdDataset chapters
72 rdf:type schema:Chapter
73 N0cf2458064c1410da43a837a6acf21be rdf:first sg:person.01242414260.33
74 rdf:rest rdf:nil
75 N21ca4114e9c742b0b72407a4c2369083 rdf:first N2aa35668d1d141cface7d4b189434f0d
76 rdf:rest rdf:nil
77 N2aa35668d1d141cface7d4b189434f0d schema:familyName Baronio
78 schema:givenName Fabio
79 rdf:type schema:Person
80 N58e152b555aa46c4abb92bda084c4b2a schema:familyName Onorato
81 schema:givenName Miguel
82 rdf:type schema:Person
83 N82981ea525b641c59f5e188d519973f2 rdf:first sg:person.0764653251.31
84 rdf:rest N0cf2458064c1410da43a837a6acf21be
85 N89bf56a4c07a472ab4ec6d77a85e9cf0 schema:name Springer Nature
86 rdf:type schema:Organisation
87 N96d99efa90b04c9ea19491cd94aafc48 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N9db8fc5f03504a7da26d6c160569fdf5 schema:isbn 978-3-319-39212-7
90 978-3-319-39214-1
91 schema:name Rogue and Shock Waves in Nonlinear Dispersive Media
92 rdf:type schema:Book
93 Na7aa00cee665490ab0eb98805c8ad685 rdf:first N58e152b555aa46c4abb92bda084c4b2a
94 rdf:rest Nb3f1b8e6acec423fade977a64bb98ed3
95 Nb3f1b8e6acec423fade977a64bb98ed3 rdf:first Ne454f95e277745d19e56a476443db63c
96 rdf:rest N21ca4114e9c742b0b72407a4c2369083
97 Nbe649f54d93341369b47877e5727f088 schema:name dimensions_id
98 schema:value pub.1045164164
99 rdf:type schema:PropertyValue
100 Ne454f95e277745d19e56a476443db63c schema:familyName Resitori
101 schema:givenName Stefania
102 rdf:type schema:Person
103 Nf31e39df89b34450805dedb8da951fa9 schema:name doi
104 schema:value 10.1007/978-3-319-39214-1_11
105 rdf:type schema:PropertyValue
106 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
107 schema:name Mathematical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
110 schema:name Applied Mathematics
111 rdf:type schema:DefinedTerm
112 sg:person.01242414260.33 schema:affiliation grid-institutes:grid.8484.0
113 schema:familyName Trillo
114 schema:givenName Stefano
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242414260.33
116 rdf:type schema:Person
117 sg:person.0764653251.31 schema:affiliation grid-institutes:grid.503422.2
118 schema:familyName Conforti
119 schema:givenName Matteo
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764653251.31
121 rdf:type schema:Person
122 grid-institutes:grid.503422.2 schema:alternateName Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000, Lille, France
123 schema:name Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000, Lille, France
124 rdf:type schema:Organization
125 grid-institutes:grid.8484.0 schema:alternateName Dipartimento di Ingegneria, Universitá di Ferrara, Via Saragat 1, 44122, Ferrara, Italy
126 schema:name Dipartimento di Ingegneria, Universitá di Ferrara, Via Saragat 1, 44122, Ferrara, Italy
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...