Source Reconstruction by Partial Measurements for a Class of Hyperbolic Systems in Cascade View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Fatiha Alabau-Boussouira , Piermarco Cannarsa , Masahiro Yamamoto

ABSTRACT

We consider a system of two inhomogeneous wave equations coupled in cascade. The source terms are of the form σ 1(t)f(x), and σ 2(t)g(x), where the σ i ’s are known functions whereas the sources f and g are unknown and have to be reconstructed. We investigate the reconstruction of these two space-dependent sources from a single boundary measurement of the second component of the state-vector. We prove identification and stability estimates for all sufficiently large times T under a smallness condition on the norm of (σ 1 −σ 2)′ in L 2([0, T]) in the class of coupling coefficients that keep a constant sign in the spatial domain. We give sharper conditions if one of the two kernels σ i ’s is positive definite. Furthermore, we give examples of coupling coefficients that change sign within the domain for which identification fails. Our approach is based on suitable observability estimates for the corresponding free coupled system established in Alabau-Boussouira (Math Control Signals Syst 26:1–46, 2014; Math Control Relat Fields 5:1–30, 2015) and the approach based on control theory developed in Puel and Yamamoto (Inverse Probl 12:995–1002, 1996). More... »

PAGES

35-50

Book

TITLE

Mathematical Paradigms of Climate Science

ISBN

978-3-319-39091-8
978-3-319-39092-5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-39092-5_3

DOI

http://dx.doi.org/10.1007/978-3-319-39092-5_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000689810


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institut Elie Cartan de Lorraine, UMR-CNRS 7502, Universit\u00e9 de Lorraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alabau-Boussouira", 
        "givenName": "Fatiha", 
        "id": "sg:person.016007050671.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016007050671.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Roma Tor Vergata"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "Piermarco", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Mathematical Sciences, The University of Tokyo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamamoto", 
        "givenName": "Masahiro", 
        "id": "sg:person.01034756761.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034756761.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016117209", 
          "https://doi.org/10.1007/s00245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605309908820684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017086132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/11/2/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017272542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(76)90096-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022131944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0266-5611/12/6/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029641358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00498-013-0112-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033104062", 
          "https://doi.org/10.1007/s00498-013-0112-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crma.2012.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033866631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0330055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062844383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0363012995284928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062881181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/mcrf.2015.5.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071742174"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "We consider a system of two inhomogeneous wave equations coupled in cascade. The source terms are of the form \u03c3 1(t)f(x), and \u03c3 2(t)g(x), where the \u03c3 i \u2019s are known functions whereas the sources f and g are unknown and have to be reconstructed. We investigate the reconstruction of these two space-dependent sources from a single boundary measurement of the second component of the state-vector. We prove identification and stability estimates for all sufficiently large times T under a smallness condition on the norm of (\u03c3 1 \u2212\u03c3 2)\u2032 in L 2([0, T]) in the class of coupling coefficients that keep a constant sign in the spatial domain. We give sharper conditions if one of the two kernels \u03c3 i \u2019s is positive definite. Furthermore, we give examples of coupling coefficients that change sign within the domain for which identification fails. Our approach is based on suitable observability estimates for the corresponding free coupled system established in Alabau-Boussouira (Math Control Signals Syst 26:1\u201346, 2014; Math Control Relat Fields 5:1\u201330, 2015) and the approach based on control theory developed in Puel and Yamamoto (Inverse Probl 12:995\u20131002, 1996).", 
    "editor": [
      {
        "familyName": "Ancona", 
        "givenName": "Fabio", 
        "type": "Person"
      }, 
      {
        "familyName": "Cannarsa", 
        "givenName": "Piermarco", 
        "type": "Person"
      }, 
      {
        "familyName": "Jones", 
        "givenName": "Christopher", 
        "type": "Person"
      }, 
      {
        "familyName": "Portaluri", 
        "givenName": "Alessandro", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-39092-5_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-39091-8", 
        "978-3-319-39092-5"
      ], 
      "name": "Mathematical Paradigms of Climate Science", 
      "type": "Book"
    }, 
    "name": "Source Reconstruction by Partial Measurements for a Class of Hyperbolic Systems in Cascade", 
    "pagination": "35-50", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-39092-5_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "03490ad7734e04234bd037b7493eb5d5250f60fd725d3f806b249586f6617e11"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000689810"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-39092-5_3", 
      "https://app.dimensions.ai/details/publication/pub.1000689810"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000243.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-39092-5_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-39092-5_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-39092-5_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-39092-5_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-39092-5_3'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-39092-5_3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N28faa9c6894848e48ea60ce045844c2c
4 schema:citation sg:pub.10.1007/s00245
5 sg:pub.10.1007/s00498-013-0112-8
6 https://doi.org/10.1016/0001-8708(76)90096-7
7 https://doi.org/10.1016/j.crma.2012.05.009
8 https://doi.org/10.1080/03605309908820684
9 https://doi.org/10.1088/0266-5611/11/2/013
10 https://doi.org/10.1088/0266-5611/12/6/013
11 https://doi.org/10.1137/0330055
12 https://doi.org/10.1137/s0363012995284928
13 https://doi.org/10.3934/mcrf.2015.5.1
14 schema:datePublished 2016
15 schema:datePublishedReg 2016-01-01
16 schema:description We consider a system of two inhomogeneous wave equations coupled in cascade. The source terms are of the form σ 1(t)f(x), and σ 2(t)g(x), where the σ i ’s are known functions whereas the sources f and g are unknown and have to be reconstructed. We investigate the reconstruction of these two space-dependent sources from a single boundary measurement of the second component of the state-vector. We prove identification and stability estimates for all sufficiently large times T under a smallness condition on the norm of (σ 1 −σ 2)′ in L 2([0, T]) in the class of coupling coefficients that keep a constant sign in the spatial domain. We give sharper conditions if one of the two kernels σ i ’s is positive definite. Furthermore, we give examples of coupling coefficients that change sign within the domain for which identification fails. Our approach is based on suitable observability estimates for the corresponding free coupled system established in Alabau-Boussouira (Math Control Signals Syst 26:1–46, 2014; Math Control Relat Fields 5:1–30, 2015) and the approach based on control theory developed in Puel and Yamamoto (Inverse Probl 12:995–1002, 1996).
17 schema:editor N7160386996c14a05867af555a6a7bf3e
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nb58f7282f5714f909665f39c3f77abbf
22 schema:name Source Reconstruction by Partial Measurements for a Class of Hyperbolic Systems in Cascade
23 schema:pagination 35-50
24 schema:productId N2eed03d08a5e4085bdfcea9c9588a294
25 N3dbce821afbc41b2953a80d34bc86fa1
26 N6911768ca3cb450f85b3cc72ec7a3c38
27 schema:publisher N6b10c9a467f64922b7907e7ae2d2d20c
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000689810
29 https://doi.org/10.1007/978-3-319-39092-5_3
30 schema:sdDatePublished 2019-04-15T18:07
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Ne149f667fab4465dadf4854d8ff36380
33 schema:url http://link.springer.com/10.1007/978-3-319-39092-5_3
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N0418a61993584b49a1249afd31938daa rdf:first sg:person.014257010655.09
38 rdf:rest N118fb875b10f485fb4bac312ea0a1757
39 N076b9b2fd59b4f08a0894a72d3de2fa3 schema:familyName Portaluri
40 schema:givenName Alessandro
41 rdf:type schema:Person
42 N0f354c0aea8a42d99214e7b1b08d4662 rdf:first Nd255af6fe4444dc7aced1faeac519174
43 rdf:rest Nb39b60b4804b4208a8028aa9cbb7383c
44 N118fb875b10f485fb4bac312ea0a1757 rdf:first sg:person.01034756761.52
45 rdf:rest rdf:nil
46 N28faa9c6894848e48ea60ce045844c2c rdf:first sg:person.016007050671.20
47 rdf:rest N0418a61993584b49a1249afd31938daa
48 N2eed03d08a5e4085bdfcea9c9588a294 schema:name readcube_id
49 schema:value 03490ad7734e04234bd037b7493eb5d5250f60fd725d3f806b249586f6617e11
50 rdf:type schema:PropertyValue
51 N3cc1733a848e44ccb05645df36ea5d66 schema:familyName Ancona
52 schema:givenName Fabio
53 rdf:type schema:Person
54 N3dbce821afbc41b2953a80d34bc86fa1 schema:name doi
55 schema:value 10.1007/978-3-319-39092-5_3
56 rdf:type schema:PropertyValue
57 N6911768ca3cb450f85b3cc72ec7a3c38 schema:name dimensions_id
58 schema:value pub.1000689810
59 rdf:type schema:PropertyValue
60 N6b10c9a467f64922b7907e7ae2d2d20c schema:location Cham
61 schema:name Springer International Publishing
62 rdf:type schema:Organisation
63 N7160386996c14a05867af555a6a7bf3e rdf:first N3cc1733a848e44ccb05645df36ea5d66
64 rdf:rest Ndbfb27271bda424180583d82af5e79f4
65 Nb39b60b4804b4208a8028aa9cbb7383c rdf:first N076b9b2fd59b4f08a0894a72d3de2fa3
66 rdf:rest rdf:nil
67 Nb58f7282f5714f909665f39c3f77abbf schema:isbn 978-3-319-39091-8
68 978-3-319-39092-5
69 schema:name Mathematical Paradigms of Climate Science
70 rdf:type schema:Book
71 Nd255af6fe4444dc7aced1faeac519174 schema:familyName Jones
72 schema:givenName Christopher
73 rdf:type schema:Person
74 Ndae2971995c94b5cadf527b4a83d5867 schema:name Institut Elie Cartan de Lorraine, UMR-CNRS 7502, Université de Lorraine
75 rdf:type schema:Organization
76 Ndbfb27271bda424180583d82af5e79f4 rdf:first Ne43afa0cc7f243608a3572167ebd392e
77 rdf:rest N0f354c0aea8a42d99214e7b1b08d4662
78 Ne149f667fab4465dadf4854d8ff36380 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Ne43afa0cc7f243608a3572167ebd392e schema:familyName Cannarsa
81 schema:givenName Piermarco
82 rdf:type schema:Person
83 Nf99ba70713ea4cef84836d777afd7a0f schema:name Dipartimento di Matematica, Università di Roma Tor Vergata
84 rdf:type schema:Organization
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
89 schema:name Pure Mathematics
90 rdf:type schema:DefinedTerm
91 sg:person.01034756761.52 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
92 schema:familyName Yamamoto
93 schema:givenName Masahiro
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034756761.52
95 rdf:type schema:Person
96 sg:person.014257010655.09 schema:affiliation Nf99ba70713ea4cef84836d777afd7a0f
97 schema:familyName Cannarsa
98 schema:givenName Piermarco
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
100 rdf:type schema:Person
101 sg:person.016007050671.20 schema:affiliation Ndae2971995c94b5cadf527b4a83d5867
102 schema:familyName Alabau-Boussouira
103 schema:givenName Fatiha
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016007050671.20
105 rdf:type schema:Person
106 sg:pub.10.1007/s00245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016117209
107 https://doi.org/10.1007/s00245
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s00498-013-0112-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033104062
110 https://doi.org/10.1007/s00498-013-0112-8
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0001-8708(76)90096-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022131944
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.crma.2012.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033866631
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1080/03605309908820684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017086132
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1088/0266-5611/11/2/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017272542
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1088/0266-5611/12/6/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029641358
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1137/0330055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062844383
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1137/s0363012995284928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062881181
125 rdf:type schema:CreativeWork
126 https://doi.org/10.3934/mcrf.2015.5.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071742174
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
129 schema:name Department of Mathematical Sciences, The University of Tokyo
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...