Towards a More Accurate Error Model for BioNano Optical Maps View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Menglu Li , Angel C. Y. Mak , Ernest T. Lam , Pui-Yan Kwok , Ming Xiao , Kevin Y. Yip , Ting-Fung Chan , Siu-Ming Yiu

ABSTRACT

Next-generation sequencing technologies has advanced our knowledge in genomics by a tremendous step in the past years. On the other hand, there are still critical questions left unanswered due to the intrinsic limitations of short read length. To address this issue, several new sequencing platforms came into view. However, a lack of comprehensive understanding of the sequencing error poses a primary challenge for their optimal use. Here, we focus on optical mapping, a high-throughput laboratory technique that provides long-range information of a genome. Existing error model is based on OpGen maps. It is not clear if the model is also good for BioNano maps. In this paper, we try to provide a more accurate error model for BioNano optical maps based on real data. Due to the limited availability of real datasets, as an indirect validation of our model, we predict the regions that are difficult to cover and compare the predicted results with the empirical results (both simulated and real data) on human chromosomes. The results are promising, with most of the difficult regions correctly predicted. Tested on BioNano maps, our model is more accurate than the most popular existing error model developed based on OpGen maps. Although we may not have captured all possible errors of the technology, our model should provide important insights for the development of downstream analysis tools using BioNano optical maps. More... »

PAGES

67-79

Book

TITLE

Bioinformatics Research and Applications

ISBN

978-3-319-38781-9
978-3-319-38782-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-38782-6_6

DOI

http://dx.doi.org/10.1007/978-3-319-38782-6_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030752898


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Computer Science, The University of Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Menglu", 
        "id": "sg:person.010121610225.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010121610225.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Cardiovascular Research Institute, University of California"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mak", 
        "givenName": "Angel C. Y.", 
        "id": "sg:person.01152270066.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152270066.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "BioNano Genomics"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lam", 
        "givenName": "Ernest T.", 
        "id": "sg:person.0656050243.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656050243.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Cardiovascular Research Institute, University of California"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwok", 
        "givenName": "Pui-Yan", 
        "id": "sg:person.01221224024.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221224024.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Drexel University", 
          "id": "https://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "School of Biomedical Engineering, Science and Health Systems, Drexel University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Ming", 
        "id": "sg:person.01154710540.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154710540.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Computer Science and Engineering, The Chinese University of Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yip", 
        "givenName": "Kevin Y.", 
        "id": "sg:person.0710624727.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710624727.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Life Sciences, The Chinese Univeristy of Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chan", 
        "givenName": "Ting-Fung", 
        "id": "sg:person.0665227365.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665227365.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Computer Science, The University of Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yiu", 
        "givenName": "Siu-Ming", 
        "id": "sg:person.014353647011.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014353647011.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0914638107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002734064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.68.12.6321-6331.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002815355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-8-278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003983720", 
          "https://doi.org/10.1186/1471-2164-8-278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/12.1part1.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004185494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0604040103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004868369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02459636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006718787", 
          "https://doi.org/10.1007/bf02459636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02459636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006718787", 
          "https://doi.org/10.1007/bf02459636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2047-217x-3-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011209953", 
          "https://doi.org/10.1186/2047-217x-3-11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-44753-6_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012221671", 
          "https://doi.org/10.1007/978-3-662-44753-6_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0495-432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012877503", 
          "https://doi.org/10.1038/ng0495-432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.115.183483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013648450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.115.183483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013648450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2011.0221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018297125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021027371", 
          "https://doi.org/10.1186/1471-2105-13-189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021027371", 
          "https://doi.org/10.1186/1471-2105-13-189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-14-505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026214314", 
          "https://doi.org/10.1186/1471-2164-14-505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0055864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029117953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.01595-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029611799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031145148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031145148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034378118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0lc00680g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039407423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.1997.4.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2006.13.442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245486"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Next-generation sequencing technologies has advanced our knowledge in genomics by a tremendous step in the past years. On the other hand, there are still critical questions left unanswered due to the intrinsic limitations of short read length. To address this issue, several new sequencing platforms came into view. However, a lack of comprehensive understanding of the sequencing error poses a primary challenge for their optimal use. Here, we focus on optical mapping, a high-throughput laboratory technique that provides long-range information of a genome. Existing error model is based on OpGen maps. It is not clear if the model is also good for BioNano maps. In this paper, we try to provide a more accurate error model for BioNano optical maps based on real data. Due to the limited availability of real datasets, as an indirect validation of our model, we predict the regions that are difficult to cover and compare the predicted results with the empirical results (both simulated and real data) on human chromosomes. The results are promising, with most of the difficult regions correctly predicted. Tested on BioNano maps, our model is more accurate than the most popular existing error model developed based on OpGen maps. Although we may not have captured all possible errors of the technology, our model should provide important insights for the development of downstream analysis tools using BioNano optical maps.", 
    "editor": [
      {
        "familyName": "Bourgeois", 
        "givenName": "Anu", 
        "type": "Person"
      }, 
      {
        "familyName": "Skums", 
        "givenName": "Pavel", 
        "type": "Person"
      }, 
      {
        "familyName": "Wan", 
        "givenName": "Xiang", 
        "type": "Person"
      }, 
      {
        "familyName": "Zelikovsky", 
        "givenName": "Alex", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-38782-6_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-38781-9", 
        "978-3-319-38782-6"
      ], 
      "name": "Bioinformatics Research and Applications", 
      "type": "Book"
    }, 
    "name": "Towards a More Accurate Error Model for BioNano Optical Maps", 
    "pagination": "67-79", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-38782-6_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "928070d487cad3fa3dfce26adad08edb2306b0feb51c0144007c5ae8559950cd"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030752898"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-38782-6_6", 
      "https://app.dimensions.ai/details/publication/pub.1030752898"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000262.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-38782-6_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-38782-6_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-38782-6_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-38782-6_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-38782-6_6'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      23 PREDICATES      47 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-38782-6_6 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N9673283d895845c6932a8edb039f7835
4 schema:citation sg:pub.10.1007/978-3-662-44753-6_6
5 sg:pub.10.1007/bf02459636
6 sg:pub.10.1038/ng0495-432
7 sg:pub.10.1186/1471-2105-13-189
8 sg:pub.10.1186/1471-2164-14-505
9 sg:pub.10.1186/1471-2164-8-278
10 sg:pub.10.1186/2047-217x-3-11
11 https://doi.org/10.1039/c0lc00680g
12 https://doi.org/10.1073/pnas.0604040103
13 https://doi.org/10.1073/pnas.0914638107
14 https://doi.org/10.1089/cmb.1997.4.91
15 https://doi.org/10.1089/cmb.2006.13.442
16 https://doi.org/10.1089/cmb.2011.0221
17 https://doi.org/10.1093/bioinformatics/btn102
18 https://doi.org/10.1093/nar/12.1part1.237
19 https://doi.org/10.1093/nar/gkq673
20 https://doi.org/10.1128/aac.01595-10
21 https://doi.org/10.1128/aem.68.12.6321-6331.2002
22 https://doi.org/10.1371/journal.pone.0055864
23 https://doi.org/10.1534/genetics.115.183483
24 schema:datePublished 2016
25 schema:datePublishedReg 2016-01-01
26 schema:description Next-generation sequencing technologies has advanced our knowledge in genomics by a tremendous step in the past years. On the other hand, there are still critical questions left unanswered due to the intrinsic limitations of short read length. To address this issue, several new sequencing platforms came into view. However, a lack of comprehensive understanding of the sequencing error poses a primary challenge for their optimal use. Here, we focus on optical mapping, a high-throughput laboratory technique that provides long-range information of a genome. Existing error model is based on OpGen maps. It is not clear if the model is also good for BioNano maps. In this paper, we try to provide a more accurate error model for BioNano optical maps based on real data. Due to the limited availability of real datasets, as an indirect validation of our model, we predict the regions that are difficult to cover and compare the predicted results with the empirical results (both simulated and real data) on human chromosomes. The results are promising, with most of the difficult regions correctly predicted. Tested on BioNano maps, our model is more accurate than the most popular existing error model developed based on OpGen maps. Although we may not have captured all possible errors of the technology, our model should provide important insights for the development of downstream analysis tools using BioNano optical maps.
27 schema:editor Ne2ae3bfb4e094db889e0c7ea07c0eb90
28 schema:genre chapter
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf Na7bcecc150d0433a8807a4eaaacba39f
32 schema:name Towards a More Accurate Error Model for BioNano Optical Maps
33 schema:pagination 67-79
34 schema:productId N7995abb6029d48bb8605b3ae302720e4
35 Nca239721bae047b4bf6e7960506acdb4
36 Nf1af029368344546a084e7f348a2aebd
37 schema:publisher Nec1c22c20f91487e8509f4a498dee64b
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030752898
39 https://doi.org/10.1007/978-3-319-38782-6_6
40 schema:sdDatePublished 2019-04-15T17:14
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N1399be3f078348ba8af80aeb934f3fee
43 schema:url http://link.springer.com/10.1007/978-3-319-38782-6_6
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N1399be3f078348ba8af80aeb934f3fee schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N1970ff48a35148e8901f87ccce6a1e9d schema:familyName Wan
50 schema:givenName Xiang
51 rdf:type schema:Person
52 N1f5634ff0d844382b5dfb401eeba47e8 rdf:first sg:person.01221224024.09
53 rdf:rest Nf50f1a722f3943a2ac0af3f48b4c5e42
54 N57c642c97dae41879224e7ba60aee030 rdf:first sg:person.01152270066.43
55 rdf:rest N92187c4afc9147a581d2748914119ff5
56 N5cd602c858dc4f7bb2cdd9d60262c909 schema:name Cardiovascular Research Institute, University of California
57 rdf:type schema:Organization
58 N739f5255816448b2aa1fcb5c4ba08823 schema:familyName Bourgeois
59 schema:givenName Anu
60 rdf:type schema:Person
61 N78d569f423bb4589b0ab86abe3b0e87d rdf:first sg:person.0710624727.27
62 rdf:rest Ne83caa4a799e4c4abfa6031a4cc68209
63 N7995abb6029d48bb8605b3ae302720e4 schema:name dimensions_id
64 schema:value pub.1030752898
65 rdf:type schema:PropertyValue
66 N92187c4afc9147a581d2748914119ff5 rdf:first sg:person.0656050243.90
67 rdf:rest N1f5634ff0d844382b5dfb401eeba47e8
68 N936fb01cd65d4442a527735fa5e7db73 rdf:first Nc9e94374912b4e589df2d827397aa9d4
69 rdf:rest Ncaa19fedad0f44b08d0fa8bfaea2a459
70 N9673283d895845c6932a8edb039f7835 rdf:first sg:person.010121610225.72
71 rdf:rest N57c642c97dae41879224e7ba60aee030
72 Na07c0dc9cac34f75a1fa04abfa22885b schema:name Department of Computer Science and Engineering, The Chinese University of Hong Kong
73 rdf:type schema:Organization
74 Na7bcecc150d0433a8807a4eaaacba39f schema:isbn 978-3-319-38781-9
75 978-3-319-38782-6
76 schema:name Bioinformatics Research and Applications
77 rdf:type schema:Book
78 Nb264b64c16dd43ea97eb30a529fa80b0 rdf:first sg:person.014353647011.13
79 rdf:rest rdf:nil
80 Nc1093124f5b94aa6b9dda129a8601670 rdf:first Nd911c2a1b3574139b9ed58511cedf555
81 rdf:rest rdf:nil
82 Nc9e94374912b4e589df2d827397aa9d4 schema:familyName Skums
83 schema:givenName Pavel
84 rdf:type schema:Person
85 Nca239721bae047b4bf6e7960506acdb4 schema:name readcube_id
86 schema:value 928070d487cad3fa3dfce26adad08edb2306b0feb51c0144007c5ae8559950cd
87 rdf:type schema:PropertyValue
88 Ncaa19fedad0f44b08d0fa8bfaea2a459 rdf:first N1970ff48a35148e8901f87ccce6a1e9d
89 rdf:rest Nc1093124f5b94aa6b9dda129a8601670
90 Ncc507fb614a046b18b9bb1f2aad0371d schema:name Cardiovascular Research Institute, University of California
91 rdf:type schema:Organization
92 Nd911c2a1b3574139b9ed58511cedf555 schema:familyName Zelikovsky
93 schema:givenName Alex
94 rdf:type schema:Person
95 Nde48c1e333b04a2aa88566493d898a3c schema:name School of Life Sciences, The Chinese Univeristy of Hong Kong
96 rdf:type schema:Organization
97 Ne2ae3bfb4e094db889e0c7ea07c0eb90 rdf:first N739f5255816448b2aa1fcb5c4ba08823
98 rdf:rest N936fb01cd65d4442a527735fa5e7db73
99 Ne83caa4a799e4c4abfa6031a4cc68209 rdf:first sg:person.0665227365.30
100 rdf:rest Nb264b64c16dd43ea97eb30a529fa80b0
101 Nec1c22c20f91487e8509f4a498dee64b schema:location Cham
102 schema:name Springer International Publishing
103 rdf:type schema:Organisation
104 Necc1bf43b01d439d9ff388fbc6832d1e schema:name BioNano Genomics
105 rdf:type schema:Organization
106 Nf1af029368344546a084e7f348a2aebd schema:name doi
107 schema:value 10.1007/978-3-319-38782-6_6
108 rdf:type schema:PropertyValue
109 Nf50f1a722f3943a2ac0af3f48b4c5e42 rdf:first sg:person.01154710540.58
110 rdf:rest N78d569f423bb4589b0ab86abe3b0e87d
111 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biological Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
115 schema:name Genetics
116 rdf:type schema:DefinedTerm
117 sg:person.010121610225.72 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
118 schema:familyName Li
119 schema:givenName Menglu
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010121610225.72
121 rdf:type schema:Person
122 sg:person.01152270066.43 schema:affiliation Ncc507fb614a046b18b9bb1f2aad0371d
123 schema:familyName Mak
124 schema:givenName Angel C. Y.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152270066.43
126 rdf:type schema:Person
127 sg:person.01154710540.58 schema:affiliation https://www.grid.ac/institutes/grid.166341.7
128 schema:familyName Xiao
129 schema:givenName Ming
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154710540.58
131 rdf:type schema:Person
132 sg:person.01221224024.09 schema:affiliation N5cd602c858dc4f7bb2cdd9d60262c909
133 schema:familyName Kwok
134 schema:givenName Pui-Yan
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221224024.09
136 rdf:type schema:Person
137 sg:person.014353647011.13 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
138 schema:familyName Yiu
139 schema:givenName Siu-Ming
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014353647011.13
141 rdf:type schema:Person
142 sg:person.0656050243.90 schema:affiliation Necc1bf43b01d439d9ff388fbc6832d1e
143 schema:familyName Lam
144 schema:givenName Ernest T.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656050243.90
146 rdf:type schema:Person
147 sg:person.0665227365.30 schema:affiliation Nde48c1e333b04a2aa88566493d898a3c
148 schema:familyName Chan
149 schema:givenName Ting-Fung
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665227365.30
151 rdf:type schema:Person
152 sg:person.0710624727.27 schema:affiliation Na07c0dc9cac34f75a1fa04abfa22885b
153 schema:familyName Yip
154 schema:givenName Kevin Y.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710624727.27
156 rdf:type schema:Person
157 sg:pub.10.1007/978-3-662-44753-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012221671
158 https://doi.org/10.1007/978-3-662-44753-6_6
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/bf02459636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006718787
161 https://doi.org/10.1007/bf02459636
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/ng0495-432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012877503
164 https://doi.org/10.1038/ng0495-432
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/1471-2105-13-189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021027371
167 https://doi.org/10.1186/1471-2105-13-189
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1471-2164-14-505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026214314
170 https://doi.org/10.1186/1471-2164-14-505
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2164-8-278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003983720
173 https://doi.org/10.1186/1471-2164-8-278
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/2047-217x-3-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011209953
176 https://doi.org/10.1186/2047-217x-3-11
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1039/c0lc00680g schema:sameAs https://app.dimensions.ai/details/publication/pub.1039407423
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1073/pnas.0604040103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004868369
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1073/pnas.0914638107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002734064
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1089/cmb.1997.4.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245196
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1089/cmb.2006.13.442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245486
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1089/cmb.2011.0221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018297125
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/bioinformatics/btn102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034378118
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/nar/12.1part1.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004185494
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/nar/gkq673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031145148
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1128/aac.01595-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029611799
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1128/aem.68.12.6321-6331.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002815355
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1371/journal.pone.0055864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029117953
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1534/genetics.115.183483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013648450
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.166341.7 schema:alternateName Drexel University
205 schema:name School of Biomedical Engineering, Science and Health Systems, Drexel University
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
208 schema:name Department of Computer Science, The University of Hong Kong
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...