Towards a More Accurate Error Model for BioNano Optical Maps View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Menglu Li , Angel C. Y. Mak , Ernest T. Lam , Pui-Yan Kwok , Ming Xiao , Kevin Y. Yip , Ting-Fung Chan , Siu-Ming Yiu

ABSTRACT

Next-generation sequencing technologies has advanced our knowledge in genomics by a tremendous step in the past years. On the other hand, there are still critical questions left unanswered due to the intrinsic limitations of short read length. To address this issue, several new sequencing platforms came into view. However, a lack of comprehensive understanding of the sequencing error poses a primary challenge for their optimal use. Here, we focus on optical mapping, a high-throughput laboratory technique that provides long-range information of a genome. Existing error model is based on OpGen maps. It is not clear if the model is also good for BioNano maps. In this paper, we try to provide a more accurate error model for BioNano optical maps based on real data. Due to the limited availability of real datasets, as an indirect validation of our model, we predict the regions that are difficult to cover and compare the predicted results with the empirical results (both simulated and real data) on human chromosomes. The results are promising, with most of the difficult regions correctly predicted. Tested on BioNano maps, our model is more accurate than the most popular existing error model developed based on OpGen maps. Although we may not have captured all possible errors of the technology, our model should provide important insights for the development of downstream analysis tools using BioNano optical maps. More... »

PAGES

67-79

Book

TITLE

Bioinformatics Research and Applications

ISBN

978-3-319-38781-9
978-3-319-38782-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-38782-6_6

DOI

http://dx.doi.org/10.1007/978-3-319-38782-6_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030752898


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Computer Science, The University of Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Menglu", 
        "id": "sg:person.010121610225.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010121610225.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Cardiovascular Research Institute, University of California"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mak", 
        "givenName": "Angel C. Y.", 
        "id": "sg:person.01152270066.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152270066.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "BioNano Genomics"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lam", 
        "givenName": "Ernest T.", 
        "id": "sg:person.0656050243.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656050243.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Cardiovascular Research Institute, University of California"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwok", 
        "givenName": "Pui-Yan", 
        "id": "sg:person.01221224024.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221224024.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Drexel University", 
          "id": "https://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "School of Biomedical Engineering, Science and Health Systems, Drexel University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Ming", 
        "id": "sg:person.01154710540.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154710540.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Computer Science and Engineering, The Chinese University of Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yip", 
        "givenName": "Kevin Y.", 
        "id": "sg:person.0710624727.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710624727.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "School of Life Sciences, The Chinese Univeristy of Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chan", 
        "givenName": "Ting-Fung", 
        "id": "sg:person.0665227365.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665227365.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hong Kong", 
          "id": "https://www.grid.ac/institutes/grid.194645.b", 
          "name": [
            "Department of Computer Science, The University of Hong Kong"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yiu", 
        "givenName": "Siu-Ming", 
        "id": "sg:person.014353647011.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014353647011.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.0914638107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002734064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.68.12.6321-6331.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002815355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-8-278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003983720", 
          "https://doi.org/10.1186/1471-2164-8-278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/12.1part1.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004185494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0604040103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004868369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02459636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006718787", 
          "https://doi.org/10.1007/bf02459636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02459636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006718787", 
          "https://doi.org/10.1007/bf02459636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2047-217x-3-11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011209953", 
          "https://doi.org/10.1186/2047-217x-3-11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-44753-6_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012221671", 
          "https://doi.org/10.1007/978-3-662-44753-6_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0495-432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012877503", 
          "https://doi.org/10.1038/ng0495-432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.115.183483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013648450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.115.183483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013648450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2011.0221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018297125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021027371", 
          "https://doi.org/10.1186/1471-2105-13-189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021027371", 
          "https://doi.org/10.1186/1471-2105-13-189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-14-505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026214314", 
          "https://doi.org/10.1186/1471-2164-14-505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0055864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029117953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.01595-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029611799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031145148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031145148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034378118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0lc00680g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039407423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.1997.4.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2006.13.442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245486"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Next-generation sequencing technologies has advanced our knowledge in genomics by a tremendous step in the past years. On the other hand, there are still critical questions left unanswered due to the intrinsic limitations of short read length. To address this issue, several new sequencing platforms came into view. However, a lack of comprehensive understanding of the sequencing error poses a primary challenge for their optimal use. Here, we focus on optical mapping, a high-throughput laboratory technique that provides long-range information of a genome. Existing error model is based on OpGen maps. It is not clear if the model is also good for BioNano maps. In this paper, we try to provide a more accurate error model for BioNano optical maps based on real data. Due to the limited availability of real datasets, as an indirect validation of our model, we predict the regions that are difficult to cover and compare the predicted results with the empirical results (both simulated and real data) on human chromosomes. The results are promising, with most of the difficult regions correctly predicted. Tested on BioNano maps, our model is more accurate than the most popular existing error model developed based on OpGen maps. Although we may not have captured all possible errors of the technology, our model should provide important insights for the development of downstream analysis tools using BioNano optical maps.", 
    "editor": [
      {
        "familyName": "Bourgeois", 
        "givenName": "Anu", 
        "type": "Person"
      }, 
      {
        "familyName": "Skums", 
        "givenName": "Pavel", 
        "type": "Person"
      }, 
      {
        "familyName": "Wan", 
        "givenName": "Xiang", 
        "type": "Person"
      }, 
      {
        "familyName": "Zelikovsky", 
        "givenName": "Alex", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-38782-6_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-38781-9", 
        "978-3-319-38782-6"
      ], 
      "name": "Bioinformatics Research and Applications", 
      "type": "Book"
    }, 
    "name": "Towards a More Accurate Error Model for BioNano Optical Maps", 
    "pagination": "67-79", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-38782-6_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "928070d487cad3fa3dfce26adad08edb2306b0feb51c0144007c5ae8559950cd"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030752898"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-38782-6_6", 
      "https://app.dimensions.ai/details/publication/pub.1030752898"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000262.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-38782-6_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-38782-6_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-38782-6_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-38782-6_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-38782-6_6'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      23 PREDICATES      47 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-38782-6_6 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N4053200fe2734d479ff48a63d0b65378
4 schema:citation sg:pub.10.1007/978-3-662-44753-6_6
5 sg:pub.10.1007/bf02459636
6 sg:pub.10.1038/ng0495-432
7 sg:pub.10.1186/1471-2105-13-189
8 sg:pub.10.1186/1471-2164-14-505
9 sg:pub.10.1186/1471-2164-8-278
10 sg:pub.10.1186/2047-217x-3-11
11 https://doi.org/10.1039/c0lc00680g
12 https://doi.org/10.1073/pnas.0604040103
13 https://doi.org/10.1073/pnas.0914638107
14 https://doi.org/10.1089/cmb.1997.4.91
15 https://doi.org/10.1089/cmb.2006.13.442
16 https://doi.org/10.1089/cmb.2011.0221
17 https://doi.org/10.1093/bioinformatics/btn102
18 https://doi.org/10.1093/nar/12.1part1.237
19 https://doi.org/10.1093/nar/gkq673
20 https://doi.org/10.1128/aac.01595-10
21 https://doi.org/10.1128/aem.68.12.6321-6331.2002
22 https://doi.org/10.1371/journal.pone.0055864
23 https://doi.org/10.1534/genetics.115.183483
24 schema:datePublished 2016
25 schema:datePublishedReg 2016-01-01
26 schema:description Next-generation sequencing technologies has advanced our knowledge in genomics by a tremendous step in the past years. On the other hand, there are still critical questions left unanswered due to the intrinsic limitations of short read length. To address this issue, several new sequencing platforms came into view. However, a lack of comprehensive understanding of the sequencing error poses a primary challenge for their optimal use. Here, we focus on optical mapping, a high-throughput laboratory technique that provides long-range information of a genome. Existing error model is based on OpGen maps. It is not clear if the model is also good for BioNano maps. In this paper, we try to provide a more accurate error model for BioNano optical maps based on real data. Due to the limited availability of real datasets, as an indirect validation of our model, we predict the regions that are difficult to cover and compare the predicted results with the empirical results (both simulated and real data) on human chromosomes. The results are promising, with most of the difficult regions correctly predicted. Tested on BioNano maps, our model is more accurate than the most popular existing error model developed based on OpGen maps. Although we may not have captured all possible errors of the technology, our model should provide important insights for the development of downstream analysis tools using BioNano optical maps.
27 schema:editor N2d4ffa97c91b4304af8df3b193a1dc0a
28 schema:genre chapter
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N62d3dbe873524a2a8bd7079e5ba8eefe
32 schema:name Towards a More Accurate Error Model for BioNano Optical Maps
33 schema:pagination 67-79
34 schema:productId N07bf6c495a424ec1ac97c57773607dd2
35 N62876633d6a24cd0aa79ff78b71b6c5f
36 Neb00d2642cfa4144838c99ef15d0537c
37 schema:publisher N58253c67753b43c782e1c3c8516d8c09
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030752898
39 https://doi.org/10.1007/978-3-319-38782-6_6
40 schema:sdDatePublished 2019-04-15T17:14
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nb8589b09fdea4ccea3a72b465899b679
43 schema:url http://link.springer.com/10.1007/978-3-319-38782-6_6
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N03dc5a32ee30466d81b2794b7ce460b3 schema:name School of Life Sciences, The Chinese Univeristy of Hong Kong
48 rdf:type schema:Organization
49 N078608989b894b75adafe0954edb7bcb schema:name Cardiovascular Research Institute, University of California
50 rdf:type schema:Organization
51 N07bf6c495a424ec1ac97c57773607dd2 schema:name dimensions_id
52 schema:value pub.1030752898
53 rdf:type schema:PropertyValue
54 N165ef55b773b440bb11988f4885cc1d7 schema:familyName Wan
55 schema:givenName Xiang
56 rdf:type schema:Person
57 N17eac79bcb7a4dfca740740928b6eda1 schema:name BioNano Genomics
58 rdf:type schema:Organization
59 N2d4ffa97c91b4304af8df3b193a1dc0a rdf:first N5dece09870564924aa52b2c7d6cdaea1
60 rdf:rest Nd769d4f7513d4471a3e0d58fe2758996
61 N3aa0cbe69a1b4534bbac559143537590 schema:familyName Skums
62 schema:givenName Pavel
63 rdf:type schema:Person
64 N4053200fe2734d479ff48a63d0b65378 rdf:first sg:person.010121610225.72
65 rdf:rest Nd6e77867b7e947679edc650fa4ca4952
66 N58253c67753b43c782e1c3c8516d8c09 schema:location Cham
67 schema:name Springer International Publishing
68 rdf:type schema:Organisation
69 N5aae14f249424494a05b08d2e8ff6f63 rdf:first Nf2cc76c4caec406ab048ed39f8cdd314
70 rdf:rest rdf:nil
71 N5dece09870564924aa52b2c7d6cdaea1 schema:familyName Bourgeois
72 schema:givenName Anu
73 rdf:type schema:Person
74 N62876633d6a24cd0aa79ff78b71b6c5f schema:name readcube_id
75 schema:value 928070d487cad3fa3dfce26adad08edb2306b0feb51c0144007c5ae8559950cd
76 rdf:type schema:PropertyValue
77 N62d3dbe873524a2a8bd7079e5ba8eefe schema:isbn 978-3-319-38781-9
78 978-3-319-38782-6
79 schema:name Bioinformatics Research and Applications
80 rdf:type schema:Book
81 N8966d17ba34048ddbd8a219cedb203e8 rdf:first N165ef55b773b440bb11988f4885cc1d7
82 rdf:rest N5aae14f249424494a05b08d2e8ff6f63
83 Na7d7813c5b2546b1a13b4f9421169fe2 rdf:first sg:person.01221224024.09
84 rdf:rest Nbcb2bfc4d03e439ba1f4334045c9c2ec
85 Nac9242d4d15b4629bb1145996674e517 rdf:first sg:person.014353647011.13
86 rdf:rest rdf:nil
87 Nb8589b09fdea4ccea3a72b465899b679 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nbc524c5e582a41f4ad3e773d793b76dd rdf:first sg:person.0710624727.27
90 rdf:rest Nf1f188332d8b4ead8c35af68f3e530d3
91 Nbcb2bfc4d03e439ba1f4334045c9c2ec rdf:first sg:person.01154710540.58
92 rdf:rest Nbc524c5e582a41f4ad3e773d793b76dd
93 Nd68148930a7b456e9e5ab1ae5bab792d schema:name Cardiovascular Research Institute, University of California
94 rdf:type schema:Organization
95 Nd6e77867b7e947679edc650fa4ca4952 rdf:first sg:person.01152270066.43
96 rdf:rest Ndfb4d95b910c4ed6b10cdfde7d1485d9
97 Nd769d4f7513d4471a3e0d58fe2758996 rdf:first N3aa0cbe69a1b4534bbac559143537590
98 rdf:rest N8966d17ba34048ddbd8a219cedb203e8
99 Ndfb4d95b910c4ed6b10cdfde7d1485d9 rdf:first sg:person.0656050243.90
100 rdf:rest Na7d7813c5b2546b1a13b4f9421169fe2
101 Neb00d2642cfa4144838c99ef15d0537c schema:name doi
102 schema:value 10.1007/978-3-319-38782-6_6
103 rdf:type schema:PropertyValue
104 Nefc22814e91a43758ef815d39d98b128 schema:name Department of Computer Science and Engineering, The Chinese University of Hong Kong
105 rdf:type schema:Organization
106 Nf1f188332d8b4ead8c35af68f3e530d3 rdf:first sg:person.0665227365.30
107 rdf:rest Nac9242d4d15b4629bb1145996674e517
108 Nf2cc76c4caec406ab048ed39f8cdd314 schema:familyName Zelikovsky
109 schema:givenName Alex
110 rdf:type schema:Person
111 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biological Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
115 schema:name Genetics
116 rdf:type schema:DefinedTerm
117 sg:person.010121610225.72 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
118 schema:familyName Li
119 schema:givenName Menglu
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010121610225.72
121 rdf:type schema:Person
122 sg:person.01152270066.43 schema:affiliation Nd68148930a7b456e9e5ab1ae5bab792d
123 schema:familyName Mak
124 schema:givenName Angel C. Y.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152270066.43
126 rdf:type schema:Person
127 sg:person.01154710540.58 schema:affiliation https://www.grid.ac/institutes/grid.166341.7
128 schema:familyName Xiao
129 schema:givenName Ming
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154710540.58
131 rdf:type schema:Person
132 sg:person.01221224024.09 schema:affiliation N078608989b894b75adafe0954edb7bcb
133 schema:familyName Kwok
134 schema:givenName Pui-Yan
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221224024.09
136 rdf:type schema:Person
137 sg:person.014353647011.13 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
138 schema:familyName Yiu
139 schema:givenName Siu-Ming
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014353647011.13
141 rdf:type schema:Person
142 sg:person.0656050243.90 schema:affiliation N17eac79bcb7a4dfca740740928b6eda1
143 schema:familyName Lam
144 schema:givenName Ernest T.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656050243.90
146 rdf:type schema:Person
147 sg:person.0665227365.30 schema:affiliation N03dc5a32ee30466d81b2794b7ce460b3
148 schema:familyName Chan
149 schema:givenName Ting-Fung
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665227365.30
151 rdf:type schema:Person
152 sg:person.0710624727.27 schema:affiliation Nefc22814e91a43758ef815d39d98b128
153 schema:familyName Yip
154 schema:givenName Kevin Y.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710624727.27
156 rdf:type schema:Person
157 sg:pub.10.1007/978-3-662-44753-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012221671
158 https://doi.org/10.1007/978-3-662-44753-6_6
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/bf02459636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006718787
161 https://doi.org/10.1007/bf02459636
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/ng0495-432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012877503
164 https://doi.org/10.1038/ng0495-432
165 rdf:type schema:CreativeWork
166 sg:pub.10.1186/1471-2105-13-189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021027371
167 https://doi.org/10.1186/1471-2105-13-189
168 rdf:type schema:CreativeWork
169 sg:pub.10.1186/1471-2164-14-505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026214314
170 https://doi.org/10.1186/1471-2164-14-505
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2164-8-278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003983720
173 https://doi.org/10.1186/1471-2164-8-278
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/2047-217x-3-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011209953
176 https://doi.org/10.1186/2047-217x-3-11
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1039/c0lc00680g schema:sameAs https://app.dimensions.ai/details/publication/pub.1039407423
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1073/pnas.0604040103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004868369
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1073/pnas.0914638107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002734064
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1089/cmb.1997.4.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245196
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1089/cmb.2006.13.442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245486
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1089/cmb.2011.0221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018297125
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/bioinformatics/btn102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034378118
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/nar/12.1part1.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004185494
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/nar/gkq673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031145148
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1128/aac.01595-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029611799
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1128/aem.68.12.6321-6331.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002815355
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1371/journal.pone.0055864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029117953
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1534/genetics.115.183483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013648450
203 rdf:type schema:CreativeWork
204 https://www.grid.ac/institutes/grid.166341.7 schema:alternateName Drexel University
205 schema:name School of Biomedical Engineering, Science and Health Systems, Drexel University
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
208 schema:name Department of Computer Science, The University of Hong Kong
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...