Privacy Preserving Dynamic Room Layout Mapping View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Xinyu Li , Yanyi Zhang , Ivan Marsic , Randall S. Burd

ABSTRACT

We present a novel and efficient room layout mapping strategy that does not reveal people’s identity. The system uses only a Kinect depth sensor instead of RGB cameras or a high-resolution depth sensor. The users’ facial details will neither be captured nor recognized by the system. The system recognizes and localizes 3D objects in an indoor environment, that includes the furniture and equipment, and generates a 2D map of room layout. Our system accomplishes layout mapping in three steps. First, it converts a depth image from the Kinect into a top-view image. Second, our system processes the top-view image by restoring the missing information from occlusion caused by moving people and random noise from Kinect depth sensor. Third, it recognizes and localizes different objects based on their shape and height for a given top-view image. We evaluated this system in two challenging real-world application scenarios: a laboratory room with four people present and a trauma room with up to 10 people during actual trauma resuscitations. The system achieved 80 % object recognition accuracy with 9.25 cm average layout mapping error for the laboratory furniture scenario and 82 % object recognition accuracy for the trauma resuscitation scenario during six actual trauma cases. More... »

PAGES

61-70

References to SciGraph publications

  • 2014-10. Fast RGB-D people tracking for service robots in AUTONOMOUS ROBOTS
  • 2012. 3D Object Detection with Multiple Kinects in COMPUTER VISION – ECCV 2012. WORKSHOPS AND DEMONSTRATIONS
  • Book

    TITLE

    Image and Signal Processing

    ISBN

    978-3-319-33617-6
    978-3-319-33618-3

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-33618-3_7

    DOI

    http://dx.doi.org/10.1007/978-3-319-33618-3_7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1003362984


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Rutgers University", 
              "id": "https://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Department of Electrical and Computer Engineering, Rutgers University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Xinyu", 
            "id": "sg:person.014103701670.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103701670.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rutgers University", 
              "id": "https://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Department of Electrical and Computer Engineering, Rutgers University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Yanyi", 
            "id": "sg:person.016140340747.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016140340747.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rutgers University", 
              "id": "https://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Department of Electrical and Computer Engineering, Rutgers University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marsic", 
            "givenName": "Ivan", 
            "id": "sg:person.01326415027.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326415027.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Division of Trauma and Burns, Children\u2019s National Medical Center"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Burd", 
            "givenName": "Randall S.", 
            "id": "sg:person.0767652515.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767652515.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/2466715.2466727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006016642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2030112.2030123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011163813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.artint.2014.12.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022212694"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-33868-7_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033298856", 
              "https://doi.org/10.1007/978-3-642-33868-7_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10514-014-9385-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048278152", 
              "https://doi.org/10.1007/s10514-014-9385-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)cp.1943-5487.0000525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057627843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/83.366481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061239207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mmul.2012.24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061410292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcyb.2013.2271112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061579498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2013.179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093876086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/fit.2012.30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094266713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/3dv.2013.55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094772092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iros.2006.282312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095725300"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016", 
        "datePublishedReg": "2016-01-01", 
        "description": "We present a novel and efficient room layout mapping strategy that does not reveal people\u2019s identity. The system uses only a Kinect depth sensor instead of RGB cameras or a high-resolution depth sensor. The users\u2019 facial details will neither be captured nor recognized by the system. The system recognizes and localizes 3D objects in an indoor environment, that includes the furniture and equipment, and generates a 2D map of room layout. Our system accomplishes layout mapping in three steps. First, it converts a depth image from the Kinect into a top-view image. Second, our system processes the top-view image by restoring the missing information from occlusion caused by moving people and random noise from Kinect depth sensor. Third, it recognizes and localizes different objects based on their shape and height for a given top-view image. We evaluated this system in two challenging real-world application scenarios: a laboratory room with four people present and a trauma room with up to 10 people during actual trauma resuscitations. The system achieved 80\u00a0% object recognition accuracy with 9.25\u00a0cm average layout mapping error for the laboratory furniture scenario and 82\u00a0% object recognition accuracy for the trauma resuscitation scenario during six actual trauma cases.", 
        "editor": [
          {
            "familyName": "Mansouri", 
            "givenName": "Alamin", 
            "type": "Person"
          }, 
          {
            "familyName": "Nouboud", 
            "givenName": "Fathallah", 
            "type": "Person"
          }, 
          {
            "familyName": "Chalifour", 
            "givenName": "Alain", 
            "type": "Person"
          }, 
          {
            "familyName": "Mammass", 
            "givenName": "Driss", 
            "type": "Person"
          }, 
          {
            "familyName": "Meunier", 
            "givenName": "Jean", 
            "type": "Person"
          }, 
          {
            "familyName": "Elmoataz", 
            "givenName": "Abderrahim", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-33618-3_7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-33617-6", 
            "978-3-319-33618-3"
          ], 
          "name": "Image and Signal Processing", 
          "type": "Book"
        }, 
        "name": "Privacy Preserving Dynamic Room Layout Mapping", 
        "pagination": "61-70", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-33618-3_7"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1005124afec1b2140f21b2d3c2852581aefcba5c2b796ab2d767c4ba6008bf1f"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1003362984"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-33618-3_7", 
          "https://app.dimensions.ai/details/publication/pub.1003362984"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T16:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000245.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-33618-3_7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-33618-3_7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-33618-3_7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-33618-3_7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-33618-3_7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    154 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-33618-3_7 schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author Na1d2f71dff9648fbbb0c90a145821215
    4 schema:citation sg:pub.10.1007/978-3-642-33868-7_10
    5 sg:pub.10.1007/s10514-014-9385-0
    6 https://doi.org/10.1016/j.artint.2014.12.007
    7 https://doi.org/10.1061/(asce)cp.1943-5487.0000525
    8 https://doi.org/10.1109/3dv.2013.55
    9 https://doi.org/10.1109/83.366481
    10 https://doi.org/10.1109/fit.2012.30
    11 https://doi.org/10.1109/iccv.2013.179
    12 https://doi.org/10.1109/iros.2006.282312
    13 https://doi.org/10.1109/mmul.2012.24
    14 https://doi.org/10.1109/tcyb.2013.2271112
    15 https://doi.org/10.1145/2030112.2030123
    16 https://doi.org/10.1145/2466715.2466727
    17 schema:datePublished 2016
    18 schema:datePublishedReg 2016-01-01
    19 schema:description We present a novel and efficient room layout mapping strategy that does not reveal people’s identity. The system uses only a Kinect depth sensor instead of RGB cameras or a high-resolution depth sensor. The users’ facial details will neither be captured nor recognized by the system. The system recognizes and localizes 3D objects in an indoor environment, that includes the furniture and equipment, and generates a 2D map of room layout. Our system accomplishes layout mapping in three steps. First, it converts a depth image from the Kinect into a top-view image. Second, our system processes the top-view image by restoring the missing information from occlusion caused by moving people and random noise from Kinect depth sensor. Third, it recognizes and localizes different objects based on their shape and height for a given top-view image. We evaluated this system in two challenging real-world application scenarios: a laboratory room with four people present and a trauma room with up to 10 people during actual trauma resuscitations. The system achieved 80 % object recognition accuracy with 9.25 cm average layout mapping error for the laboratory furniture scenario and 82 % object recognition accuracy for the trauma resuscitation scenario during six actual trauma cases.
    20 schema:editor N4bedd131ab774ae1a05877e4bde03c3d
    21 schema:genre chapter
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N0c49909bdb9d4a57b6d76c3af5776210
    25 schema:name Privacy Preserving Dynamic Room Layout Mapping
    26 schema:pagination 61-70
    27 schema:productId N66d48dd3d8e7405d9eed4d9a5d16378d
    28 N8d7aaa5116354c0ebad599e95ff5d1c2
    29 N924a8e34e0db4af88a2876c13390c73a
    30 schema:publisher Na3933afdfd594b3787571bfb943cff10
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003362984
    32 https://doi.org/10.1007/978-3-319-33618-3_7
    33 schema:sdDatePublished 2019-04-15T16:14
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher Ne37a3553c1294929b31c32ad7366a80c
    36 schema:url http://link.springer.com/10.1007/978-3-319-33618-3_7
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset chapters
    39 rdf:type schema:Chapter
    40 N0b22f015270a4f218ac2a9af595d674c rdf:first sg:person.016140340747.61
    41 rdf:rest N512374dc673044b88d98e0901dfc3207
    42 N0c49909bdb9d4a57b6d76c3af5776210 schema:isbn 978-3-319-33617-6
    43 978-3-319-33618-3
    44 schema:name Image and Signal Processing
    45 rdf:type schema:Book
    46 N360fd9d9751644ec8021871b6cfb4d74 rdf:first sg:person.0767652515.46
    47 rdf:rest rdf:nil
    48 N3fe8885fd5874f9999bb23f702b621a0 schema:familyName Nouboud
    49 schema:givenName Fathallah
    50 rdf:type schema:Person
    51 N4bedd131ab774ae1a05877e4bde03c3d rdf:first Na3c5995d9fcc49cb985b4c4c3be1ec4d
    52 rdf:rest N85a767e6a81247cd97440f706caad39b
    53 N512374dc673044b88d98e0901dfc3207 rdf:first sg:person.01326415027.61
    54 rdf:rest N360fd9d9751644ec8021871b6cfb4d74
    55 N5ed97b93a42f41a585511daa636240dc rdf:first Ne913a7680550483bbe0409622a3a57ef
    56 rdf:rest N726d3dd6b4d049719883dcd88ecf33b9
    57 N66d48dd3d8e7405d9eed4d9a5d16378d schema:name dimensions_id
    58 schema:value pub.1003362984
    59 rdf:type schema:PropertyValue
    60 N726d3dd6b4d049719883dcd88ecf33b9 rdf:first Nf1ffefdbd95844c0a29260630e9f228a
    61 rdf:rest Nad30429a4b56461f8259666da533af9f
    62 N85a767e6a81247cd97440f706caad39b rdf:first N3fe8885fd5874f9999bb23f702b621a0
    63 rdf:rest N5ed97b93a42f41a585511daa636240dc
    64 N8d7aaa5116354c0ebad599e95ff5d1c2 schema:name doi
    65 schema:value 10.1007/978-3-319-33618-3_7
    66 rdf:type schema:PropertyValue
    67 N924a8e34e0db4af88a2876c13390c73a schema:name readcube_id
    68 schema:value 1005124afec1b2140f21b2d3c2852581aefcba5c2b796ab2d767c4ba6008bf1f
    69 rdf:type schema:PropertyValue
    70 N972bd76e25f040acbb68c2df82cc1ff1 rdf:first Ncf60e11b536547149930d8515dcb1cec
    71 rdf:rest rdf:nil
    72 Na1d2f71dff9648fbbb0c90a145821215 rdf:first sg:person.014103701670.78
    73 rdf:rest N0b22f015270a4f218ac2a9af595d674c
    74 Na3933afdfd594b3787571bfb943cff10 schema:location Cham
    75 schema:name Springer International Publishing
    76 rdf:type schema:Organisation
    77 Na3c5995d9fcc49cb985b4c4c3be1ec4d schema:familyName Mansouri
    78 schema:givenName Alamin
    79 rdf:type schema:Person
    80 Nad30429a4b56461f8259666da533af9f rdf:first Ne647b388dd184e7cb79035dcc5b18774
    81 rdf:rest N972bd76e25f040acbb68c2df82cc1ff1
    82 Ncf60e11b536547149930d8515dcb1cec schema:familyName Elmoataz
    83 schema:givenName Abderrahim
    84 rdf:type schema:Person
    85 Ne37a3553c1294929b31c32ad7366a80c schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 Ne647b388dd184e7cb79035dcc5b18774 schema:familyName Meunier
    88 schema:givenName Jean
    89 rdf:type schema:Person
    90 Ne913a7680550483bbe0409622a3a57ef schema:familyName Chalifour
    91 schema:givenName Alain
    92 rdf:type schema:Person
    93 Nf1ffefdbd95844c0a29260630e9f228a schema:familyName Mammass
    94 schema:givenName Driss
    95 rdf:type schema:Person
    96 Nf3791e8398f14226bbc266b86365821f schema:name Division of Trauma and Burns, Children’s National Medical Center
    97 rdf:type schema:Organization
    98 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Psychology and Cognitive Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Psychology
    103 rdf:type schema:DefinedTerm
    104 sg:person.01326415027.61 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
    105 schema:familyName Marsic
    106 schema:givenName Ivan
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326415027.61
    108 rdf:type schema:Person
    109 sg:person.014103701670.78 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
    110 schema:familyName Li
    111 schema:givenName Xinyu
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103701670.78
    113 rdf:type schema:Person
    114 sg:person.016140340747.61 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
    115 schema:familyName Zhang
    116 schema:givenName Yanyi
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016140340747.61
    118 rdf:type schema:Person
    119 sg:person.0767652515.46 schema:affiliation Nf3791e8398f14226bbc266b86365821f
    120 schema:familyName Burd
    121 schema:givenName Randall S.
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767652515.46
    123 rdf:type schema:Person
    124 sg:pub.10.1007/978-3-642-33868-7_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033298856
    125 https://doi.org/10.1007/978-3-642-33868-7_10
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s10514-014-9385-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048278152
    128 https://doi.org/10.1007/s10514-014-9385-0
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.artint.2014.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022212694
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1061/(asce)cp.1943-5487.0000525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057627843
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/3dv.2013.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094772092
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/83.366481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239207
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/fit.2012.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094266713
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/iccv.2013.179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093876086
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/iros.2006.282312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095725300
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/mmul.2012.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061410292
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/tcyb.2013.2271112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579498
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1145/2030112.2030123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011163813
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1145/2466715.2466727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006016642
    151 rdf:type schema:CreativeWork
    152 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
    153 schema:name Department of Electrical and Computer Engineering, Rutgers University
    154 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...