Detection of Steady State in Pedestrian Experiments View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-12-11

AUTHORS

Weichen Liao , Antoine Tordeux , Armin Seyfried , Mohcine Chraibi , Xiaoping Zheng , Ying Zhao

ABSTRACT

Initial conditions could have strong influences on the dynamics of pedestrian experiments. Thus, a careful differentiation between transient state and steady state is important and necessary for a thorough study. In this contribution a modified CUSUM algorithm is proposed to automatically detect steady state from time series of pedestrian experiments. Major modifications on the statistics include introducing a step function to enhance the sensitivity, adding a boundary to limit the increase, and simplifying the calculation to improve the computational efficiency. Furthermore, the threshold of the detection parameter is calibrated using an autoregressive process. By testing the robustness, the modified CUSUM algorithm is able to reproduce identical steady state with different references. Its application well contributes to accurate analysis and reliable comparison of experimental results. More... »

PAGES

73-79

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-33482-0_10

DOI

http://dx.doi.org/10.1007/978-3-319-33482-0_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020574900


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich GmbH, 52428, J\u00fclich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Beijing University of Chemical Technology, 100029, Beijing, China", 
            "Forschungszentrum J\u00fclich GmbH, 52428, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liao", 
        "givenName": "Weichen", 
        "id": "sg:person.013261254277.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013261254277.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bergische Universit\u00e4t Wuppertal, 42119, Wuppertal, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7787.f", 
          "name": [
            "Forschungszentrum J\u00fclich GmbH, 52428, J\u00fclich, Germany", 
            "Bergische Universit\u00e4t Wuppertal, 42119, Wuppertal, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tordeux", 
        "givenName": "Antoine", 
        "id": "sg:person.0711244634.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711244634.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich GmbH, 52428, J\u00fclich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Forschungszentrum J\u00fclich GmbH, 52428, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seyfried", 
        "givenName": "Armin", 
        "id": "sg:person.014676264157.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676264157.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungszentrum J\u00fclich GmbH, 52428, J\u00fclich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.8385.6", 
          "name": [
            "Forschungszentrum J\u00fclich GmbH, 52428, J\u00fclich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chraibi", 
        "givenName": "Mohcine", 
        "id": "sg:person.012724113050.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724113050.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University, 100084, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Xiaoping", 
        "id": "sg:person.011505602103.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505602103.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing University of Chemical Technology, 100029, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.48166.3d", 
          "name": [
            "Beijing University of Chemical Technology, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Ying", 
        "id": "sg:person.015544603047.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015544603047.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-12-11", 
    "datePublishedReg": "2016-12-11", 
    "description": "Initial conditions could have strong influences on the dynamics of pedestrian experiments. Thus, a careful differentiation between transient state and steady state is important and necessary for a thorough study. In this contribution a modified CUSUM algorithm is proposed to automatically detect steady state from time series of pedestrian experiments. Major modifications on the statistics include introducing a step function to enhance the sensitivity, adding a boundary to limit the increase, and simplifying the calculation to improve the computational efficiency. Furthermore, the threshold of the detection parameter is calibrated using an autoregressive process. By testing the robustness, the modified CUSUM algorithm is able to reproduce identical steady state with different references. Its application well contributes to accurate analysis and reliable comparison of experimental results.", 
    "editor": [
      {
        "familyName": "Knoop", 
        "givenName": "Victor L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Daamen", 
        "givenName": "Winnie", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-33482-0_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-33481-3", 
        "978-3-319-33482-0"
      ], 
      "name": "Traffic and Granular Flow '15", 
      "type": "Book"
    }, 
    "keywords": [
      "steady state", 
      "pedestrian experiments", 
      "transient state", 
      "experimental results", 
      "computational efficiency", 
      "detection parameters", 
      "initial conditions", 
      "step function", 
      "strong influence", 
      "major modifications", 
      "experiments", 
      "CUSUM algorithm", 
      "different references", 
      "thorough study", 
      "robustness", 
      "efficiency", 
      "algorithm", 
      "boundaries", 
      "time series", 
      "applications", 
      "reliable comparison", 
      "parameters", 
      "influence", 
      "calculations", 
      "conditions", 
      "process", 
      "identical steady states", 
      "autoregressive process", 
      "state", 
      "dynamics", 
      "modification", 
      "results", 
      "comparison", 
      "reference", 
      "increase", 
      "detection", 
      "sensitivity", 
      "analysis", 
      "series", 
      "threshold", 
      "contribution", 
      "function", 
      "study", 
      "statistics", 
      "differentiation", 
      "careful differentiation"
    ], 
    "name": "Detection of Steady State in Pedestrian Experiments", 
    "pagination": "73-79", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020574900"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-33482-0_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-33482-0_10", 
      "https://app.dimensions.ai/details/publication/pub.1020574900"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_283.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-33482-0_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-33482-0_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-33482-0_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-33482-0_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-33482-0_10'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      23 PREDICATES      71 URIs      64 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-33482-0_10 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd9982e85924840bb96e80f45322954c0
4 schema:datePublished 2016-12-11
5 schema:datePublishedReg 2016-12-11
6 schema:description Initial conditions could have strong influences on the dynamics of pedestrian experiments. Thus, a careful differentiation between transient state and steady state is important and necessary for a thorough study. In this contribution a modified CUSUM algorithm is proposed to automatically detect steady state from time series of pedestrian experiments. Major modifications on the statistics include introducing a step function to enhance the sensitivity, adding a boundary to limit the increase, and simplifying the calculation to improve the computational efficiency. Furthermore, the threshold of the detection parameter is calibrated using an autoregressive process. By testing the robustness, the modified CUSUM algorithm is able to reproduce identical steady state with different references. Its application well contributes to accurate analysis and reliable comparison of experimental results.
7 schema:editor Ne2ea76c9107643649cfa22922becb621
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N487cbee5ebab4229823a507eb551a6a7
12 schema:keywords CUSUM algorithm
13 algorithm
14 analysis
15 applications
16 autoregressive process
17 boundaries
18 calculations
19 careful differentiation
20 comparison
21 computational efficiency
22 conditions
23 contribution
24 detection
25 detection parameters
26 different references
27 differentiation
28 dynamics
29 efficiency
30 experimental results
31 experiments
32 function
33 identical steady states
34 increase
35 influence
36 initial conditions
37 major modifications
38 modification
39 parameters
40 pedestrian experiments
41 process
42 reference
43 reliable comparison
44 results
45 robustness
46 sensitivity
47 series
48 state
49 statistics
50 steady state
51 step function
52 strong influence
53 study
54 thorough study
55 threshold
56 time series
57 transient state
58 schema:name Detection of Steady State in Pedestrian Experiments
59 schema:pagination 73-79
60 schema:productId N6eb8456193eb44d48478da12148a9ef4
61 N9bf94af6ce7747a19e23a5b6e6482fd2
62 schema:publisher N22e622cf0fef43df85e6a64a70fe2340
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020574900
64 https://doi.org/10.1007/978-3-319-33482-0_10
65 schema:sdDatePublished 2022-06-01T22:31
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N722eaadf914849d5a19f87376fbe41dc
68 schema:url https://doi.org/10.1007/978-3-319-33482-0_10
69 sgo:license sg:explorer/license/
70 sgo:sdDataset chapters
71 rdf:type schema:Chapter
72 N22e622cf0fef43df85e6a64a70fe2340 schema:name Springer Nature
73 rdf:type schema:Organisation
74 N24f29d9ec5674fba8b02353afe424583 rdf:first Nab862836b2af492e992e58dd079eb660
75 rdf:rest rdf:nil
76 N30b2f5c04d3b46e99518eb6975b201a3 rdf:first sg:person.014676264157.39
77 rdf:rest N8b001173e1a2499880564b6b1ab545ff
78 N3640afc573e54c2ab3fa9cfb3cd3f478 rdf:first sg:person.015544603047.35
79 rdf:rest rdf:nil
80 N3f39f5e253704635b252f02956123a95 schema:familyName Knoop
81 schema:givenName Victor L.
82 rdf:type schema:Person
83 N487cbee5ebab4229823a507eb551a6a7 schema:isbn 978-3-319-33481-3
84 978-3-319-33482-0
85 schema:name Traffic and Granular Flow '15
86 rdf:type schema:Book
87 N6eb8456193eb44d48478da12148a9ef4 schema:name doi
88 schema:value 10.1007/978-3-319-33482-0_10
89 rdf:type schema:PropertyValue
90 N722eaadf914849d5a19f87376fbe41dc schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N7a379f63a1f4487a9262cfcbcd46462a rdf:first sg:person.011505602103.95
93 rdf:rest N3640afc573e54c2ab3fa9cfb3cd3f478
94 N8b001173e1a2499880564b6b1ab545ff rdf:first sg:person.012724113050.28
95 rdf:rest N7a379f63a1f4487a9262cfcbcd46462a
96 N9bf94af6ce7747a19e23a5b6e6482fd2 schema:name dimensions_id
97 schema:value pub.1020574900
98 rdf:type schema:PropertyValue
99 Nab862836b2af492e992e58dd079eb660 schema:familyName Daamen
100 schema:givenName Winnie
101 rdf:type schema:Person
102 Nb99ce71af7914954b9b431489031633b rdf:first sg:person.0711244634.52
103 rdf:rest N30b2f5c04d3b46e99518eb6975b201a3
104 Nd9982e85924840bb96e80f45322954c0 rdf:first sg:person.013261254277.13
105 rdf:rest Nb99ce71af7914954b9b431489031633b
106 Ne2ea76c9107643649cfa22922becb621 rdf:first N3f39f5e253704635b252f02956123a95
107 rdf:rest N24f29d9ec5674fba8b02353afe424583
108 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
109 schema:name Information and Computing Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
112 schema:name Artificial Intelligence and Image Processing
113 rdf:type schema:DefinedTerm
114 sg:person.011505602103.95 schema:affiliation grid-institutes:grid.12527.33
115 schema:familyName Zheng
116 schema:givenName Xiaoping
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505602103.95
118 rdf:type schema:Person
119 sg:person.012724113050.28 schema:affiliation grid-institutes:grid.8385.6
120 schema:familyName Chraibi
121 schema:givenName Mohcine
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724113050.28
123 rdf:type schema:Person
124 sg:person.013261254277.13 schema:affiliation grid-institutes:grid.8385.6
125 schema:familyName Liao
126 schema:givenName Weichen
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013261254277.13
128 rdf:type schema:Person
129 sg:person.014676264157.39 schema:affiliation grid-institutes:grid.8385.6
130 schema:familyName Seyfried
131 schema:givenName Armin
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014676264157.39
133 rdf:type schema:Person
134 sg:person.015544603047.35 schema:affiliation grid-institutes:grid.48166.3d
135 schema:familyName Zhao
136 schema:givenName Ying
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015544603047.35
138 rdf:type schema:Person
139 sg:person.0711244634.52 schema:affiliation grid-institutes:grid.7787.f
140 schema:familyName Tordeux
141 schema:givenName Antoine
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711244634.52
143 rdf:type schema:Person
144 grid-institutes:grid.12527.33 schema:alternateName Tsinghua University, 100084, Beijing, China
145 schema:name Tsinghua University, 100084, Beijing, China
146 rdf:type schema:Organization
147 grid-institutes:grid.48166.3d schema:alternateName Beijing University of Chemical Technology, 100029, Beijing, China
148 schema:name Beijing University of Chemical Technology, 100029, Beijing, China
149 rdf:type schema:Organization
150 grid-institutes:grid.7787.f schema:alternateName Bergische Universität Wuppertal, 42119, Wuppertal, Germany
151 schema:name Bergische Universität Wuppertal, 42119, Wuppertal, Germany
152 Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
153 rdf:type schema:Organization
154 grid-institutes:grid.8385.6 schema:alternateName Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
155 schema:name Beijing University of Chemical Technology, 100029, Beijing, China
156 Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...