Graphene and Relativistic Quantum Physics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017

AUTHORS

Philip Kim

ABSTRACT

The honeycomb lattice structure of graphene requires an additional degree of freedom, termed as pseudo spin, to describe the orbital wave functions sitting in two different sublattices of the honeycomb lattice. In the low energy spectrum of graphene near the charge neutrality point, where the linear carrier dispersion mimics the quasi-relativistic dispersion relation, pseudo spin replaces the role of real spin in the usual Dirac Fermion spectrum. The exotic quantum transport behavior discovered in graphene, such as the unusual half-integer quantum Hall effect and Klein tunneling effect, are a direct consequence of the pseudo spin rotation. In this chapter we will discuss the non-trivial Berry phase arising from the pseudo spin rotation in monolayer graphene under a magnetic field and its experimental consequences. More... »

PAGES

1-23

Book

TITLE

Dirac Matter

ISBN

978-3-319-32535-4
978-3-319-32536-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-32536-1_1

DOI

http://dx.doi.org/10.1007/978-3-319-32536-1_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1074192789


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics, Harvard University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Philip", 
        "type": "Person"
      }
    ], 
    "datePublished": "2017", 
    "datePublishedReg": "2017-01-01", 
    "description": "The honeycomb lattice structure of graphene requires an additional degree of freedom, termed as pseudo spin, to describe the orbital wave functions sitting in two different sublattices of the honeycomb lattice. In the low energy spectrum of graphene near the charge neutrality point, where the linear carrier dispersion mimics the quasi-relativistic dispersion relation, pseudo spin replaces the role of real spin in the usual Dirac Fermion spectrum. The exotic quantum transport behavior discovered in graphene, such as the unusual half-integer quantum Hall effect and Klein tunneling effect, are a direct consequence of the pseudo spin rotation. In this chapter we will discuss the non-trivial Berry phase arising from the pseudo spin rotation in monolayer graphene under a magnetic field and its experimental consequences.", 
    "editor": [
      {
        "familyName": "Duplantier", 
        "givenName": "Bertrand", 
        "type": "Person"
      }, 
      {
        "familyName": "Rivasseau", 
        "givenName": "Vincent", 
        "type": "Person"
      }, 
      {
        "familyName": "Fuchs", 
        "givenName": "Jean-N\u00f6el", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-32536-1_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-32535-4", 
        "978-3-319-32536-1"
      ], 
      "name": "Dirac Matter", 
      "type": "Book"
    }, 
    "name": "Graphene and Relativistic Quantum Physics", 
    "pagination": "1-23", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-32536-1_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2fae9030e00f2d01c0b385ab7a643f629f56277bb41bde1c9236a02b5b8bd207"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1074192789"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-32536-1_1", 
      "https://app.dimensions.ai/details/publication/pub.1074192789"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000152.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-32536-1_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32536-1_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32536-1_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32536-1_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32536-1_1'


 

This table displays all metadata directly associated to this object as RDF triples.

74 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-32536-1_1 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author Nd9d9626d418940c7a4674414912ab71c
4 schema:datePublished 2017
5 schema:datePublishedReg 2017-01-01
6 schema:description The honeycomb lattice structure of graphene requires an additional degree of freedom, termed as pseudo spin, to describe the orbital wave functions sitting in two different sublattices of the honeycomb lattice. In the low energy spectrum of graphene near the charge neutrality point, where the linear carrier dispersion mimics the quasi-relativistic dispersion relation, pseudo spin replaces the role of real spin in the usual Dirac Fermion spectrum. The exotic quantum transport behavior discovered in graphene, such as the unusual half-integer quantum Hall effect and Klein tunneling effect, are a direct consequence of the pseudo spin rotation. In this chapter we will discuss the non-trivial Berry phase arising from the pseudo spin rotation in monolayer graphene under a magnetic field and its experimental consequences.
7 schema:editor N3f24a8b5ebff4a6f895bd03e906ec641
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N91a90e50ae1546969fe36c32686bd1dd
12 schema:name Graphene and Relativistic Quantum Physics
13 schema:pagination 1-23
14 schema:productId N3b950cfc5cc04fba8a74675ac4888fd5
15 N6937b2e374e64e0aa01abf773b677f51
16 N69f2ccc5d522438e890dedbc33461f59
17 schema:publisher Ndc3dc5c5e90b4afda3271665d3f5cfbd
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074192789
19 https://doi.org/10.1007/978-3-319-32536-1_1
20 schema:sdDatePublished 2019-04-16T00:41
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N60c1ec46dfff4b4eaab166958dff07f9
23 schema:url http://link.springer.com/10.1007/978-3-319-32536-1_1
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N049899549ea0434888b9f7b918cbf4ac schema:familyName Fuchs
28 schema:givenName Jean-Nöel
29 rdf:type schema:Person
30 N3b950cfc5cc04fba8a74675ac4888fd5 schema:name doi
31 schema:value 10.1007/978-3-319-32536-1_1
32 rdf:type schema:PropertyValue
33 N3f24a8b5ebff4a6f895bd03e906ec641 rdf:first Nf4b9284f601f48cbbf25558180c7820c
34 rdf:rest N702f943ace484f348b955f84fb6f5fac
35 N5c256f198abb41b280cc9f2bc57a199d rdf:first N049899549ea0434888b9f7b918cbf4ac
36 rdf:rest rdf:nil
37 N60c1ec46dfff4b4eaab166958dff07f9 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N6937b2e374e64e0aa01abf773b677f51 schema:name readcube_id
40 schema:value 2fae9030e00f2d01c0b385ab7a643f629f56277bb41bde1c9236a02b5b8bd207
41 rdf:type schema:PropertyValue
42 N69f2ccc5d522438e890dedbc33461f59 schema:name dimensions_id
43 schema:value pub.1074192789
44 rdf:type schema:PropertyValue
45 N702f943ace484f348b955f84fb6f5fac rdf:first Nf7c8e62579cb4b8594d796b2e270ab9e
46 rdf:rest N5c256f198abb41b280cc9f2bc57a199d
47 N91a90e50ae1546969fe36c32686bd1dd schema:isbn 978-3-319-32535-4
48 978-3-319-32536-1
49 schema:name Dirac Matter
50 rdf:type schema:Book
51 Na4eca0b7ae1a48b7a97f2046c793a3c9 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
52 schema:familyName Kim
53 schema:givenName Philip
54 rdf:type schema:Person
55 Nd9d9626d418940c7a4674414912ab71c rdf:first Na4eca0b7ae1a48b7a97f2046c793a3c9
56 rdf:rest rdf:nil
57 Ndc3dc5c5e90b4afda3271665d3f5cfbd schema:location Cham
58 schema:name Springer International Publishing
59 rdf:type schema:Organisation
60 Nf4b9284f601f48cbbf25558180c7820c schema:familyName Duplantier
61 schema:givenName Bertrand
62 rdf:type schema:Person
63 Nf7c8e62579cb4b8594d796b2e270ab9e schema:familyName Rivasseau
64 schema:givenName Vincent
65 rdf:type schema:Person
66 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
67 schema:name Physical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
70 schema:name Condensed Matter Physics
71 rdf:type schema:DefinedTerm
72 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
73 schema:name Department of Physics, Harvard University
74 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...