Quantification of Centralized/Distributed Secrecy in Stochastic Discrete Event Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Mariam Ibrahim , Jun Chen , Ratnesh Kumar

ABSTRACT

Unlike information, behaviors cannot be encrypted and may instead be protected by providing covers that generate indistinguishable observations from behaviors needed to be kept secret. Such a scheme may still leak information about secrets due to statistical difference between the occurrence probabilities of the secrets and their covers. Jensen-Shannon Divergence (JSD) is a possible means of quantifying statistical difference between two distributions and can be used to measure such information leak as is presented in this chapter. Using JSD, we quantify loss of secrecy in stochastic partially-observed discrete event systems in two settings: (i) the centralized setting, corresponding to a single attacker/observer, and (ii) the distributed collusive setting, corresponding to multiple attackers/observers, exchanging their observed information. In the centralized case, an observer structure is formed and used to aide the computation of JSD, in the limit, as the length of observations approach infinity to quantify the worst case loss of secrecy. In the distributed collusive case, channel models are introduced to extend the system model to capture the effect of exchange of observations, that allows the JSD computation of the centralized case to be applied over the extended model to measure the distributed secrecy loss. More... »

PAGES

21-40

Book

TITLE

Recent Advances in Systems Safety and Security

ISBN

978-3-319-32523-1
978-3-319-32525-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-32525-5_2

DOI

http://dx.doi.org/10.1007/978-3-319-32525-5_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011077977


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "German Jordanian University", 
          "id": "https://www.grid.ac/institutes/grid.440896.7", 
          "name": [
            "Department of Electrical and Computer Engineering, Iowa State University", 
            "Department of Mechatronics Engineering, German Jordanian University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ibrahim", 
        "givenName": "Mariam", 
        "id": "sg:person.013450635565.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013450635565.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Idaho National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.417824.c", 
          "name": [
            "Idaho National Laboratory"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jun", 
        "id": "sg:person.015043576565.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015043576565.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Iowa State University", 
          "id": "https://www.grid.ac/institutes/grid.34421.30", 
          "name": [
            "Department of Electrical and Computer Engineering, Iowa State University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Ratnesh", 
        "id": "sg:person.01047006204.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047006204.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-41157-1_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012294933", 
          "https://doi.org/10.1007/978-3-642-41157-1_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-00596-1_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020473486", 
          "https://doi.org/10.1007/978-3-642-00596-1_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ic.2013.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022616755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ifacol.2015.06.490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023142358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2003.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039770170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comcom.2009.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048134919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/43.736573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061173947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.746254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061245843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2014.2381437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061479391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2014.2382991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061479400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tase.2016.2604222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061515743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tse.2002.1027797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061788215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176996308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064405518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.2010.5717580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093519093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sp.2009.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093900620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acc.2009.5160162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094185436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ecai.2015.7301204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094431668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/focs.2013.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095643127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnsc.2014.6819598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095730313"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Unlike information, behaviors cannot be encrypted and may instead be protected by providing covers that generate indistinguishable observations from behaviors needed to be kept secret. Such a scheme may still leak information about secrets due to statistical difference between the occurrence probabilities of the secrets and their covers. Jensen-Shannon Divergence (JSD) is a possible means of quantifying statistical difference between two distributions and can be used to measure such information leak as is presented in this chapter. Using JSD, we quantify loss of secrecy in stochastic partially-observed discrete event systems in two settings: (i) the centralized setting, corresponding to a single attacker/observer, and (ii) the distributed collusive setting, corresponding to multiple attackers/observers, exchanging their observed information. In the centralized case, an observer structure is formed and used to aide the computation of JSD, in the limit, as the length of observations approach infinity to quantify the worst case loss of secrecy. In the distributed collusive case, channel models are introduced to extend the system model to capture the effect of exchange of observations, that allows the JSD computation of the centralized case to be applied over the extended model to measure the distributed secrecy loss.", 
    "editor": [
      {
        "familyName": "Pricop", 
        "givenName": "Emil", 
        "type": "Person"
      }, 
      {
        "familyName": "Stamatescu", 
        "givenName": "Grigore", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-32525-5_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3487850", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4179534", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-319-32523-1", 
        "978-3-319-32525-5"
      ], 
      "name": "Recent Advances in Systems Safety and Security", 
      "type": "Book"
    }, 
    "name": "Quantification of Centralized/Distributed Secrecy in Stochastic Discrete Event Systems", 
    "pagination": "21-40", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-32525-5_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "34c7b049b879e4f39acaa54d3a2f0785553108606c66e19b9e27ceb5ddf25837"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011077977"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-32525-5_2", 
      "https://app.dimensions.ai/details/publication/pub.1011077977"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000250.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-32525-5_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32525-5_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32525-5_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32525-5_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32525-5_2'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      23 PREDICATES      46 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-32525-5_2 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N8972af8484a64d12bcf3f7a4d07634fb
4 schema:citation sg:pub.10.1007/978-3-642-00596-1_21
5 sg:pub.10.1007/978-3-642-41157-1_10
6 https://doi.org/10.1016/j.apm.2003.12.003
7 https://doi.org/10.1016/j.comcom.2009.11.009
8 https://doi.org/10.1016/j.ic.2013.03.005
9 https://doi.org/10.1016/j.ifacol.2015.06.490
10 https://doi.org/10.1109/43.736573
11 https://doi.org/10.1109/9.746254
12 https://doi.org/10.1109/acc.2009.5160162
13 https://doi.org/10.1109/cdc.2010.5717580
14 https://doi.org/10.1109/ecai.2015.7301204
15 https://doi.org/10.1109/focs.2013.13
16 https://doi.org/10.1109/icnsc.2014.6819598
17 https://doi.org/10.1109/sp.2009.18
18 https://doi.org/10.1109/tac.2014.2381437
19 https://doi.org/10.1109/tac.2014.2382991
20 https://doi.org/10.1109/tase.2016.2604222
21 https://doi.org/10.1109/tse.2002.1027797
22 https://doi.org/10.1214/aop/1176996308
23 schema:datePublished 2016
24 schema:datePublishedReg 2016-01-01
25 schema:description Unlike information, behaviors cannot be encrypted and may instead be protected by providing covers that generate indistinguishable observations from behaviors needed to be kept secret. Such a scheme may still leak information about secrets due to statistical difference between the occurrence probabilities of the secrets and their covers. Jensen-Shannon Divergence (JSD) is a possible means of quantifying statistical difference between two distributions and can be used to measure such information leak as is presented in this chapter. Using JSD, we quantify loss of secrecy in stochastic partially-observed discrete event systems in two settings: (i) the centralized setting, corresponding to a single attacker/observer, and (ii) the distributed collusive setting, corresponding to multiple attackers/observers, exchanging their observed information. In the centralized case, an observer structure is formed and used to aide the computation of JSD, in the limit, as the length of observations approach infinity to quantify the worst case loss of secrecy. In the distributed collusive case, channel models are introduced to extend the system model to capture the effect of exchange of observations, that allows the JSD computation of the centralized case to be applied over the extended model to measure the distributed secrecy loss.
26 schema:editor N0817ac58f85941959b60e07afe551360
27 schema:genre chapter
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf Nb0d494233ec246a099660a376bd17f58
31 schema:name Quantification of Centralized/Distributed Secrecy in Stochastic Discrete Event Systems
32 schema:pagination 21-40
33 schema:productId N2e71d17957724224baca33a8632e8f6b
34 N9624cc5e950d467b9f3ff75e7d09d0a5
35 N96e05e416ee741379a693894c463cbfa
36 schema:publisher Nb37f4068dd3347158beae43451e703f1
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011077977
38 https://doi.org/10.1007/978-3-319-32525-5_2
39 schema:sdDatePublished 2019-04-15T21:00
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N2fc9afe9e7d44b9486b45c9514266749
42 schema:url http://link.springer.com/10.1007/978-3-319-32525-5_2
43 sgo:license sg:explorer/license/
44 sgo:sdDataset chapters
45 rdf:type schema:Chapter
46 N0817ac58f85941959b60e07afe551360 rdf:first N43b5f5f495f841da967695c5e54a16f1
47 rdf:rest N111d28eb2f914a1c9caa67dd857354cd
48 N111d28eb2f914a1c9caa67dd857354cd rdf:first Ne6909aef4d544085913e6ec876d26e1c
49 rdf:rest rdf:nil
50 N1d5edb5517114354b3dc740bcf777b6b rdf:first sg:person.01047006204.61
51 rdf:rest rdf:nil
52 N2e71d17957724224baca33a8632e8f6b schema:name doi
53 schema:value 10.1007/978-3-319-32525-5_2
54 rdf:type schema:PropertyValue
55 N2fc9afe9e7d44b9486b45c9514266749 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N43b5f5f495f841da967695c5e54a16f1 schema:familyName Pricop
58 schema:givenName Emil
59 rdf:type schema:Person
60 N8972af8484a64d12bcf3f7a4d07634fb rdf:first sg:person.013450635565.28
61 rdf:rest Nfa7f6e5481714b06814f9d9587ece716
62 N9624cc5e950d467b9f3ff75e7d09d0a5 schema:name dimensions_id
63 schema:value pub.1011077977
64 rdf:type schema:PropertyValue
65 N96e05e416ee741379a693894c463cbfa schema:name readcube_id
66 schema:value 34c7b049b879e4f39acaa54d3a2f0785553108606c66e19b9e27ceb5ddf25837
67 rdf:type schema:PropertyValue
68 Nb0d494233ec246a099660a376bd17f58 schema:isbn 978-3-319-32523-1
69 978-3-319-32525-5
70 schema:name Recent Advances in Systems Safety and Security
71 rdf:type schema:Book
72 Nb37f4068dd3347158beae43451e703f1 schema:location Cham
73 schema:name Springer International Publishing
74 rdf:type schema:Organisation
75 Ne6909aef4d544085913e6ec876d26e1c schema:familyName Stamatescu
76 schema:givenName Grigore
77 rdf:type schema:Person
78 Nfa7f6e5481714b06814f9d9587ece716 rdf:first sg:person.015043576565.05
79 rdf:rest N1d5edb5517114354b3dc740bcf777b6b
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
84 schema:name Statistics
85 rdf:type schema:DefinedTerm
86 sg:grant.3487850 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-32525-5_2
87 rdf:type schema:MonetaryGrant
88 sg:grant.4179534 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-319-32525-5_2
89 rdf:type schema:MonetaryGrant
90 sg:person.01047006204.61 schema:affiliation https://www.grid.ac/institutes/grid.34421.30
91 schema:familyName Kumar
92 schema:givenName Ratnesh
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047006204.61
94 rdf:type schema:Person
95 sg:person.013450635565.28 schema:affiliation https://www.grid.ac/institutes/grid.440896.7
96 schema:familyName Ibrahim
97 schema:givenName Mariam
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013450635565.28
99 rdf:type schema:Person
100 sg:person.015043576565.05 schema:affiliation https://www.grid.ac/institutes/grid.417824.c
101 schema:familyName Chen
102 schema:givenName Jun
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015043576565.05
104 rdf:type schema:Person
105 sg:pub.10.1007/978-3-642-00596-1_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020473486
106 https://doi.org/10.1007/978-3-642-00596-1_21
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/978-3-642-41157-1_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012294933
109 https://doi.org/10.1007/978-3-642-41157-1_10
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.apm.2003.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039770170
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.comcom.2009.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048134919
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.ic.2013.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022616755
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.ifacol.2015.06.490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023142358
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/43.736573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061173947
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/9.746254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061245843
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/acc.2009.5160162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094185436
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/cdc.2010.5717580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093519093
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/ecai.2015.7301204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094431668
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/focs.2013.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095643127
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/icnsc.2014.6819598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095730313
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/sp.2009.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093900620
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/tac.2014.2381437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061479391
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/tac.2014.2382991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061479400
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tase.2016.2604222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061515743
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/tse.2002.1027797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061788215
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1214/aop/1176996308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064405518
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.34421.30 schema:alternateName Iowa State University
146 schema:name Department of Electrical and Computer Engineering, Iowa State University
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.417824.c schema:alternateName Idaho National Laboratory
149 schema:name Idaho National Laboratory
150 rdf:type schema:Organization
151 https://www.grid.ac/institutes/grid.440896.7 schema:alternateName German Jordanian University
152 schema:name Department of Electrical and Computer Engineering, Iowa State University
153 Department of Mechatronics Engineering, German Jordanian University
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...