How Do People Search: A Modelling Perspective View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-04-02

AUTHORS

Isabella von Sivers , Michael J. Seitz , Gerta Köster

ABSTRACT

The simulation of pedestrian movement is an important tool to ensure safety whenever many people have to be evacuated or pass through an environment. Although there are many simulation models for pedestrian dynamics, crucial aspects of human behaviour are still being neglected. One of those behaviours is the search strategy humans use to find someone or something within a building. We present three possible search strategies for pedestrian simulation. Two are often used as default implementations: random search and the optimal solution. The third more plausibly agrees with findings from psychology, neuroscience and related fields: a nearest room heuristic. We compare and evaluate the strategies, present simulation results for two concrete scenarios, and give a recommendation for computer models of human search behaviour. More... »

PAGES

487-496

Book

TITLE

Parallel Processing and Applied Mathematics

ISBN

978-3-319-32151-6
978-3-319-32152-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-32152-3_45

DOI

http://dx.doi.org/10.1007/978-3-319-32152-3_45

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003375059


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Munich University of Applied Sciences, Lothstr. 64, 80335, M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.434949.7", 
          "name": [
            "Munich University of Applied Sciences, Lothstr. 64, 80335, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "von Sivers", 
        "givenName": "Isabella", 
        "id": "sg:person.013507031101.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013507031101.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Munich University of Applied Sciences, Lothstr. 64, 80335, M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.434949.7", 
          "name": [
            "Munich University of Applied Sciences, Lothstr. 64, 80335, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seitz", 
        "givenName": "Michael J.", 
        "id": "sg:person.013540646657.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013540646657.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Munich University of Applied Sciences, Lothstr. 64, 80335, M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.434949.7", 
          "name": [
            "Munich University of Applied Sciences, Lothstr. 64, 80335, M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00f6ster", 
        "givenName": "Gerta", 
        "id": "sg:person.013373331163.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013373331163.32"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-04-02", 
    "datePublishedReg": "2016-04-02", 
    "description": "The simulation of pedestrian movement is an important tool to ensure safety whenever many people have to be evacuated or pass through an environment. Although there are many simulation models for pedestrian dynamics, crucial aspects of human behaviour are still being neglected. One of those behaviours is the search strategy humans use to find someone or something within a building. We present three possible search strategies for pedestrian simulation. Two are often used as default implementations: random search and the optimal solution. The third more plausibly agrees with findings from psychology, neuroscience and related fields: a nearest room heuristic. We compare and evaluate the strategies, present simulation results for two concrete scenarios, and give a recommendation for computer models of human search behaviour.", 
    "editor": [
      {
        "familyName": "Wyrzykowski", 
        "givenName": "Roman", 
        "type": "Person"
      }, 
      {
        "familyName": "Deelman", 
        "givenName": "Ewa", 
        "type": "Person"
      }, 
      {
        "familyName": "Dongarra", 
        "givenName": "Jack", 
        "type": "Person"
      }, 
      {
        "familyName": "Karczewski", 
        "givenName": "Konrad", 
        "type": "Person"
      }, 
      {
        "familyName": "Kitowski", 
        "givenName": "Jacek", 
        "type": "Person"
      }, 
      {
        "familyName": "Wiatr", 
        "givenName": "Kazimierz", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-32152-3_45", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-32151-6", 
        "978-3-319-32152-3"
      ], 
      "name": "Parallel Processing and Applied Mathematics", 
      "type": "Book"
    }, 
    "keywords": [
      "human search behavior", 
      "strategies humans", 
      "human behavior", 
      "search behavior", 
      "possible search strategies", 
      "default implementation", 
      "concrete scenarios", 
      "present simulation results", 
      "pedestrian simulation", 
      "psychology", 
      "crucial aspect", 
      "random search", 
      "neuroscience", 
      "people", 
      "optimal solution", 
      "related fields", 
      "behavior", 
      "simulation results", 
      "search strategy", 
      "pedestrian movement", 
      "simulation model", 
      "pedestrian dynamics", 
      "modelling perspective", 
      "findings", 
      "perspective", 
      "heuristics", 
      "strategies", 
      "aspects", 
      "computer model", 
      "humans", 
      "implementation", 
      "simulations", 
      "important tool", 
      "scenarios", 
      "movement", 
      "model", 
      "environment", 
      "search", 
      "recommendations", 
      "tool", 
      "solution", 
      "results", 
      "buildings", 
      "safety", 
      "field", 
      "dynamics", 
      "search strategy humans", 
      "nearest room heuristic", 
      "room heuristic"
    ], 
    "name": "How Do People Search: A Modelling Perspective", 
    "pagination": "487-496", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003375059"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-32152-3_45"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-32152-3_45", 
      "https://app.dimensions.ai/details/publication/pub.1003375059"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_109.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-32152-3_45"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32152-3_45'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32152-3_45'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32152-3_45'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32152-3_45'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      23 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-32152-3_45 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N3f212a26427e4573b0641e325e4959fc
4 schema:datePublished 2016-04-02
5 schema:datePublishedReg 2016-04-02
6 schema:description The simulation of pedestrian movement is an important tool to ensure safety whenever many people have to be evacuated or pass through an environment. Although there are many simulation models for pedestrian dynamics, crucial aspects of human behaviour are still being neglected. One of those behaviours is the search strategy humans use to find someone or something within a building. We present three possible search strategies for pedestrian simulation. Two are often used as default implementations: random search and the optimal solution. The third more plausibly agrees with findings from psychology, neuroscience and related fields: a nearest room heuristic. We compare and evaluate the strategies, present simulation results for two concrete scenarios, and give a recommendation for computer models of human search behaviour.
7 schema:editor N5550e7e6828b48cb89819325fe6396f2
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N8a3dbf8dc75547c788f0b0806bdc1230
12 schema:keywords aspects
13 behavior
14 buildings
15 computer model
16 concrete scenarios
17 crucial aspect
18 default implementation
19 dynamics
20 environment
21 field
22 findings
23 heuristics
24 human behavior
25 human search behavior
26 humans
27 implementation
28 important tool
29 model
30 modelling perspective
31 movement
32 nearest room heuristic
33 neuroscience
34 optimal solution
35 pedestrian dynamics
36 pedestrian movement
37 pedestrian simulation
38 people
39 perspective
40 possible search strategies
41 present simulation results
42 psychology
43 random search
44 recommendations
45 related fields
46 results
47 room heuristic
48 safety
49 scenarios
50 search
51 search behavior
52 search strategy
53 search strategy humans
54 simulation model
55 simulation results
56 simulations
57 solution
58 strategies
59 strategies humans
60 tool
61 schema:name How Do People Search: A Modelling Perspective
62 schema:pagination 487-496
63 schema:productId N33887ef2a3c64b83adb03aa8ba8c02a4
64 N95cf5e72c38545fd9802cecacdf8c13b
65 schema:publisher N33c77fef96254e37964ef9d68b26dee3
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003375059
67 https://doi.org/10.1007/978-3-319-32152-3_45
68 schema:sdDatePublished 2021-12-01T19:55
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N7ad8ace5e8aa43349dad3a24f426a858
71 schema:url https://doi.org/10.1007/978-3-319-32152-3_45
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N02aef15ba1604aa190128b9fdc69ec7e schema:familyName Deelman
76 schema:givenName Ewa
77 rdf:type schema:Person
78 N169eef6a76124c6998c408e72a91a456 rdf:first N4bd4ef83777947e8af0d9706e6e69dbc
79 rdf:rest Nc58e04bcc7e6438c9c55335e9ef2d899
80 N18c3234a8a3642cfad7c601d484d652c rdf:first N54d8d0a299d141aa87ac02b72e3abb99
81 rdf:rest N169eef6a76124c6998c408e72a91a456
82 N21bc3677cb3241d89232283d3634fd0d rdf:first N02aef15ba1604aa190128b9fdc69ec7e
83 rdf:rest Nbef683dd6b1e46c3a31c8b4673d62291
84 N33887ef2a3c64b83adb03aa8ba8c02a4 schema:name dimensions_id
85 schema:value pub.1003375059
86 rdf:type schema:PropertyValue
87 N33c77fef96254e37964ef9d68b26dee3 schema:name Springer Nature
88 rdf:type schema:Organisation
89 N3f212a26427e4573b0641e325e4959fc rdf:first sg:person.013507031101.13
90 rdf:rest Nec498dca4dfb499f9a2a13c1541b2c29
91 N448f28a352ac4ed08fb04c4eb3af7a13 schema:familyName Wiatr
92 schema:givenName Kazimierz
93 rdf:type schema:Person
94 N4bd4ef83777947e8af0d9706e6e69dbc schema:familyName Kitowski
95 schema:givenName Jacek
96 rdf:type schema:Person
97 N54d8d0a299d141aa87ac02b72e3abb99 schema:familyName Karczewski
98 schema:givenName Konrad
99 rdf:type schema:Person
100 N5550e7e6828b48cb89819325fe6396f2 rdf:first Na019fc8f69b4461582cc62851bf26e95
101 rdf:rest N21bc3677cb3241d89232283d3634fd0d
102 N7147b123f44a4a0bb555970c8c659b5b rdf:first sg:person.013373331163.32
103 rdf:rest rdf:nil
104 N7ad8ace5e8aa43349dad3a24f426a858 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N8a3dbf8dc75547c788f0b0806bdc1230 schema:isbn 978-3-319-32151-6
107 978-3-319-32152-3
108 schema:name Parallel Processing and Applied Mathematics
109 rdf:type schema:Book
110 N95cf5e72c38545fd9802cecacdf8c13b schema:name doi
111 schema:value 10.1007/978-3-319-32152-3_45
112 rdf:type schema:PropertyValue
113 N9bc54e60e66748c9a3e13e4857e06e08 schema:familyName Dongarra
114 schema:givenName Jack
115 rdf:type schema:Person
116 Na019fc8f69b4461582cc62851bf26e95 schema:familyName Wyrzykowski
117 schema:givenName Roman
118 rdf:type schema:Person
119 Nbef683dd6b1e46c3a31c8b4673d62291 rdf:first N9bc54e60e66748c9a3e13e4857e06e08
120 rdf:rest N18c3234a8a3642cfad7c601d484d652c
121 Nc58e04bcc7e6438c9c55335e9ef2d899 rdf:first N448f28a352ac4ed08fb04c4eb3af7a13
122 rdf:rest rdf:nil
123 Nec498dca4dfb499f9a2a13c1541b2c29 rdf:first sg:person.013540646657.07
124 rdf:rest N7147b123f44a4a0bb555970c8c659b5b
125 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
126 schema:name Psychology and Cognitive Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
129 schema:name Psychology
130 rdf:type schema:DefinedTerm
131 sg:person.013373331163.32 schema:affiliation grid-institutes:grid.434949.7
132 schema:familyName Köster
133 schema:givenName Gerta
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013373331163.32
135 rdf:type schema:Person
136 sg:person.013507031101.13 schema:affiliation grid-institutes:grid.434949.7
137 schema:familyName von Sivers
138 schema:givenName Isabella
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013507031101.13
140 rdf:type schema:Person
141 sg:person.013540646657.07 schema:affiliation grid-institutes:grid.434949.7
142 schema:familyName Seitz
143 schema:givenName Michael J.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013540646657.07
145 rdf:type schema:Person
146 grid-institutes:grid.434949.7 schema:alternateName Munich University of Applied Sciences, Lothstr. 64, 80335, München, Germany
147 schema:name Munich University of Applied Sciences, Lothstr. 64, 80335, München, Germany
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...