Benchmarking Semantic Capabilities of Analogy Querying Algorithms View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-03-25

AUTHORS

Christoph Lofi , Athiq Ahamed , Pratima Kulkarni , Ravi Thakkar

ABSTRACT

Enabling semantically rich query paradigms is one of the core challenges of current information systems research. In this context, due to their importance and ubiquity in natural language, analogy queries are of particular interest. Current developments in natural language processing and machine learning resulted in some very promising algorithms relying on deep learning neural word embeddings which might contribute to finally realizing analogy queries. However, it is still quite unclear how well these algorithms work from a semantic point of view. One of the problems is that there is no clear consensus on the intended semantics of analogy queries. Furthermore, there are no suitable benchmark dataset available respecting the semantic properties of real-life analogies. Therefore, in this, paper, we discuss the challenges of benchmarking the semantics of analogy query algorithms with a special focus on neural embeddings. We also introduce the AGS analogy benchmark dataset which rectifies many weaknesses of established datasets. Finally, our experiments evaluating state-of-the-art algorithms underline the need for further research in this promising field. More... »

PAGES

463-478

Book

TITLE

Database Systems for Advanced Applications

ISBN

978-3-319-32024-3
978-3-319-32025-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-32025-0_29

DOI

http://dx.doi.org/10.1007/978-3-319-32025-0_29

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038291273


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lofi", 
        "givenName": "Christoph", 
        "id": "sg:person.011355173745.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355173745.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahamed", 
        "givenName": "Athiq", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulkarni", 
        "givenName": "Pratima", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thakkar", 
        "givenName": "Ravi", 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-03-25", 
    "datePublishedReg": "2016-03-25", 
    "description": "Enabling semantically rich query paradigms is one of the core challenges of current information systems research. In this context, due to their importance and ubiquity in natural language, analogy queries are of particular interest. Current developments in natural language processing and machine learning resulted in some very promising algorithms relying on deep learning neural word embeddings which might contribute to finally realizing analogy queries. However, it is still quite unclear how well these algorithms work from a semantic point of view. One of the problems is that there is no clear consensus on the intended semantics of analogy queries. Furthermore, there are no suitable benchmark dataset available respecting the semantic properties of real-life analogies. Therefore, in this, paper, we discuss the challenges of benchmarking the semantics of analogy query algorithms with a special focus on neural embeddings. We also introduce the AGS analogy benchmark dataset which rectifies many weaknesses of established datasets. Finally, our experiments evaluating state-of-the-art algorithms underline the need for further research in this promising field.", 
    "editor": [
      {
        "familyName": "Navathe", 
        "givenName": "Shamkant B.", 
        "type": "Person"
      }, 
      {
        "familyName": "Wu", 
        "givenName": "Weili", 
        "type": "Person"
      }, 
      {
        "familyName": "Shekhar", 
        "givenName": "Shashi", 
        "type": "Person"
      }, 
      {
        "familyName": "Du", 
        "givenName": "Xiaoyong", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "X. Sean", 
        "type": "Person"
      }, 
      {
        "familyName": "Xiong", 
        "givenName": "Hui", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-32025-0_29", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-32024-3", 
        "978-3-319-32025-0"
      ], 
      "name": "Database Systems for Advanced Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "benchmark datasets", 
      "natural language processing", 
      "suitable benchmark datasets", 
      "information systems research", 
      "neural word embeddings", 
      "query paradigm", 
      "querying algorithm", 
      "query algorithm", 
      "semantic capabilities", 
      "machine learning", 
      "art algorithms", 
      "neural embeddings", 
      "natural language", 
      "language processing", 
      "word embeddings", 
      "promising algorithm", 
      "queries", 
      "systems research", 
      "semantic point", 
      "core challenge", 
      "algorithm", 
      "dataset", 
      "semantics", 
      "semantic properties", 
      "embedding", 
      "promising field", 
      "current developments", 
      "challenges", 
      "learning", 
      "language", 
      "paradigm", 
      "capability", 
      "processing", 
      "ubiquity", 
      "research", 
      "special focus", 
      "context", 
      "need", 
      "weakness", 
      "experiments", 
      "view", 
      "interest", 
      "point", 
      "field", 
      "focus", 
      "particular interest", 
      "further research", 
      "development", 
      "state", 
      "consensus", 
      "analogy", 
      "importance", 
      "properties", 
      "clear consensus", 
      "paper", 
      "problem"
    ], 
    "name": "Benchmarking Semantic Capabilities of Analogy Querying Algorithms", 
    "pagination": "463-478", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038291273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-32025-0_29"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-32025-0_29", 
      "https://app.dimensions.ai/details/publication/pub.1038291273"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_26.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-32025-0_29"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32025-0_29'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32025-0_29'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32025-0_29'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32025-0_29'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      23 PREDICATES      81 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-32025-0_29 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndac4bc349c3d40868a691c136c70a649
4 schema:datePublished 2016-03-25
5 schema:datePublishedReg 2016-03-25
6 schema:description Enabling semantically rich query paradigms is one of the core challenges of current information systems research. In this context, due to their importance and ubiquity in natural language, analogy queries are of particular interest. Current developments in natural language processing and machine learning resulted in some very promising algorithms relying on deep learning neural word embeddings which might contribute to finally realizing analogy queries. However, it is still quite unclear how well these algorithms work from a semantic point of view. One of the problems is that there is no clear consensus on the intended semantics of analogy queries. Furthermore, there are no suitable benchmark dataset available respecting the semantic properties of real-life analogies. Therefore, in this, paper, we discuss the challenges of benchmarking the semantics of analogy query algorithms with a special focus on neural embeddings. We also introduce the AGS analogy benchmark dataset which rectifies many weaknesses of established datasets. Finally, our experiments evaluating state-of-the-art algorithms underline the need for further research in this promising field.
7 schema:editor Nc7f326b5ff9f41efa9daaa7ea41a6507
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N490f8b772285455496fb2c4c19a2bc5c
12 schema:keywords algorithm
13 analogy
14 art algorithms
15 benchmark datasets
16 capability
17 challenges
18 clear consensus
19 consensus
20 context
21 core challenge
22 current developments
23 dataset
24 development
25 embedding
26 experiments
27 field
28 focus
29 further research
30 importance
31 information systems research
32 interest
33 language
34 language processing
35 learning
36 machine learning
37 natural language
38 natural language processing
39 need
40 neural embeddings
41 neural word embeddings
42 paper
43 paradigm
44 particular interest
45 point
46 problem
47 processing
48 promising algorithm
49 promising field
50 properties
51 queries
52 query algorithm
53 query paradigm
54 querying algorithm
55 research
56 semantic capabilities
57 semantic point
58 semantic properties
59 semantics
60 special focus
61 state
62 suitable benchmark datasets
63 systems research
64 ubiquity
65 view
66 weakness
67 word embeddings
68 schema:name Benchmarking Semantic Capabilities of Analogy Querying Algorithms
69 schema:pagination 463-478
70 schema:productId Nc8879333c8b94760bd45fad58133f0bb
71 Nf43255c0dbc04330b5972540d144d001
72 schema:publisher N9b6bee7a25ac492d8cbd4548054e4bc9
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038291273
74 https://doi.org/10.1007/978-3-319-32025-0_29
75 schema:sdDatePublished 2022-06-01T22:30
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N31ed804b581640e19dfa7fa6b11522aa
78 schema:url https://doi.org/10.1007/978-3-319-32025-0_29
79 sgo:license sg:explorer/license/
80 sgo:sdDataset chapters
81 rdf:type schema:Chapter
82 N2ee6791052ad4810b7929b9b7769d33f rdf:first N3ed7569d542f4e9881ce2051a087118c
83 rdf:rest rdf:nil
84 N31ed804b581640e19dfa7fa6b11522aa schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N3212839ff7174723b8140ff3b36863b3 rdf:first Nd412d943e772411c99932a72d6045153
87 rdf:rest Na9751b637b504ed9aad929cf9688da50
88 N3c922ce0ccbc47c4854e41f6b7810cb8 schema:familyName Shekhar
89 schema:givenName Shashi
90 rdf:type schema:Person
91 N3ed7569d542f4e9881ce2051a087118c schema:familyName Xiong
92 schema:givenName Hui
93 rdf:type schema:Person
94 N3ef038e4d99e48b78d0ebe2f6c022272 rdf:first N3c922ce0ccbc47c4854e41f6b7810cb8
95 rdf:rest Nb77aea1e525740b9bf95963c0a703046
96 N490f8b772285455496fb2c4c19a2bc5c schema:isbn 978-3-319-32024-3
97 978-3-319-32025-0
98 schema:name Database Systems for Advanced Applications
99 rdf:type schema:Book
100 N9b6bee7a25ac492d8cbd4548054e4bc9 schema:name Springer Nature
101 rdf:type schema:Organisation
102 N9cc790742c6b4352985983937d96d126 schema:familyName Wang
103 schema:givenName X. Sean
104 rdf:type schema:Person
105 Na878ddc5eb4240f2a9dfeb16b3285c16 rdf:first Nadbfaa69f9c6470aa70e77ebaeca94e7
106 rdf:rest N3212839ff7174723b8140ff3b36863b3
107 Na8993f5661e2464b9be29ab96957ee99 schema:familyName Du
108 schema:givenName Xiaoyong
109 rdf:type schema:Person
110 Na9751b637b504ed9aad929cf9688da50 rdf:first Ne18308358bfc434397db644c89e10651
111 rdf:rest rdf:nil
112 Nadbfaa69f9c6470aa70e77ebaeca94e7 schema:affiliation grid-institutes:grid.6738.a
113 schema:familyName Ahamed
114 schema:givenName Athiq
115 rdf:type schema:Person
116 Nb77aea1e525740b9bf95963c0a703046 rdf:first Na8993f5661e2464b9be29ab96957ee99
117 rdf:rest Ne1ca675ad03b40a5a06f9c9ad0b5428f
118 Nbef39e6768b94692a7a16bac82894b6a schema:familyName Navathe
119 schema:givenName Shamkant B.
120 rdf:type schema:Person
121 Nc561ee67f64346dcba06424b4b5f1758 rdf:first Nfef00b50ec6e4650b0243accff71afe8
122 rdf:rest N3ef038e4d99e48b78d0ebe2f6c022272
123 Nc7f326b5ff9f41efa9daaa7ea41a6507 rdf:first Nbef39e6768b94692a7a16bac82894b6a
124 rdf:rest Nc561ee67f64346dcba06424b4b5f1758
125 Nc8879333c8b94760bd45fad58133f0bb schema:name dimensions_id
126 schema:value pub.1038291273
127 rdf:type schema:PropertyValue
128 Nd412d943e772411c99932a72d6045153 schema:affiliation grid-institutes:grid.6738.a
129 schema:familyName Kulkarni
130 schema:givenName Pratima
131 rdf:type schema:Person
132 Ndac4bc349c3d40868a691c136c70a649 rdf:first sg:person.011355173745.44
133 rdf:rest Na878ddc5eb4240f2a9dfeb16b3285c16
134 Ne18308358bfc434397db644c89e10651 schema:affiliation grid-institutes:grid.6738.a
135 schema:familyName Thakkar
136 schema:givenName Ravi
137 rdf:type schema:Person
138 Ne1ca675ad03b40a5a06f9c9ad0b5428f rdf:first N9cc790742c6b4352985983937d96d126
139 rdf:rest N2ee6791052ad4810b7929b9b7769d33f
140 Nf43255c0dbc04330b5972540d144d001 schema:name doi
141 schema:value 10.1007/978-3-319-32025-0_29
142 rdf:type schema:PropertyValue
143 Nfef00b50ec6e4650b0243accff71afe8 schema:familyName Wu
144 schema:givenName Weili
145 rdf:type schema:Person
146 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
147 schema:name Information and Computing Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
150 schema:name Artificial Intelligence and Image Processing
151 rdf:type schema:DefinedTerm
152 sg:person.011355173745.44 schema:affiliation grid-institutes:grid.6738.a
153 schema:familyName Lofi
154 schema:givenName Christoph
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355173745.44
156 rdf:type schema:Person
157 grid-institutes:grid.6738.a schema:alternateName Technische Universität Braunschweig, 38106, Brunswick, Germany
158 schema:name Technische Universität Braunschweig, 38106, Brunswick, Germany
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...