Benchmarking Semantic Capabilities of Analogy Querying Algorithms View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-03-25

AUTHORS

Christoph Lofi , Athiq Ahamed , Pratima Kulkarni , Ravi Thakkar

ABSTRACT

Enabling semantically rich query paradigms is one of the core challenges of current information systems research. In this context, due to their importance and ubiquity in natural language, analogy queries are of particular interest. Current developments in natural language processing and machine learning resulted in some very promising algorithms relying on deep learning neural word embeddings which might contribute to finally realizing analogy queries. However, it is still quite unclear how well these algorithms work from a semantic point of view. One of the problems is that there is no clear consensus on the intended semantics of analogy queries. Furthermore, there are no suitable benchmark dataset available respecting the semantic properties of real-life analogies. Therefore, in this, paper, we discuss the challenges of benchmarking the semantics of analogy query algorithms with a special focus on neural embeddings. We also introduce the AGS analogy benchmark dataset which rectifies many weaknesses of established datasets. Finally, our experiments evaluating state-of-the-art algorithms underline the need for further research in this promising field. More... »

PAGES

463-478

Book

TITLE

Database Systems for Advanced Applications

ISBN

978-3-319-32024-3
978-3-319-32025-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-32025-0_29

DOI

http://dx.doi.org/10.1007/978-3-319-32025-0_29

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038291273


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lofi", 
        "givenName": "Christoph", 
        "id": "sg:person.011355173745.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355173745.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahamed", 
        "givenName": "Athiq", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulkarni", 
        "givenName": "Pratima", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "Technische Universit\u00e4t Braunschweig, 38106, Brunswick, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thakkar", 
        "givenName": "Ravi", 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-03-25", 
    "datePublishedReg": "2016-03-25", 
    "description": "Enabling semantically rich query paradigms is one of the core challenges of current information systems research. In this context, due to their importance and ubiquity in natural language, analogy queries are of particular interest. Current developments in natural language processing and machine learning resulted in some very promising algorithms relying on deep learning neural word embeddings which might contribute to finally realizing analogy queries. However, it is still quite unclear how well these algorithms work from a semantic point of view. One of the problems is that there is no clear consensus on the intended semantics of analogy queries. Furthermore, there are no suitable benchmark dataset available respecting the semantic properties of real-life analogies. Therefore, in this, paper, we discuss the challenges of benchmarking the semantics of analogy query algorithms with a special focus on neural embeddings. We also introduce the AGS analogy benchmark dataset which rectifies many weaknesses of established datasets. Finally, our experiments evaluating state-of-the-art algorithms underline the need for further research in this promising field.", 
    "editor": [
      {
        "familyName": "Navathe", 
        "givenName": "Shamkant B.", 
        "type": "Person"
      }, 
      {
        "familyName": "Wu", 
        "givenName": "Weili", 
        "type": "Person"
      }, 
      {
        "familyName": "Shekhar", 
        "givenName": "Shashi", 
        "type": "Person"
      }, 
      {
        "familyName": "Du", 
        "givenName": "Xiaoyong", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "X. Sean", 
        "type": "Person"
      }, 
      {
        "familyName": "Xiong", 
        "givenName": "Hui", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-32025-0_29", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-32024-3", 
        "978-3-319-32025-0"
      ], 
      "name": "Database Systems for Advanced Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "benchmark datasets", 
      "suitable benchmark dataset", 
      "natural language processing", 
      "information systems research", 
      "neural word embeddings", 
      "query paradigm", 
      "query algorithm", 
      "querying algorithm", 
      "semantic capabilities", 
      "machine learning", 
      "neural embeddings", 
      "art algorithms", 
      "natural language", 
      "language processing", 
      "word embeddings", 
      "promising algorithm", 
      "queries", 
      "systems research", 
      "algorithm", 
      "core challenges", 
      "semantic point", 
      "dataset", 
      "semantics", 
      "semantic properties", 
      "embedding", 
      "promising field", 
      "current developments", 
      "challenges", 
      "learning", 
      "language", 
      "paradigm", 
      "processing", 
      "capability", 
      "ubiquity", 
      "research", 
      "special focus", 
      "context", 
      "need", 
      "weakness", 
      "experiments", 
      "view", 
      "interest", 
      "point", 
      "field", 
      "focus", 
      "further research", 
      "particular interest", 
      "development", 
      "state", 
      "consensus", 
      "importance", 
      "analogy", 
      "properties", 
      "clear consensus", 
      "paper", 
      "problem"
    ], 
    "name": "Benchmarking Semantic Capabilities of Analogy Querying Algorithms", 
    "pagination": "463-478", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038291273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-32025-0_29"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-32025-0_29", 
      "https://app.dimensions.ai/details/publication/pub.1038291273"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-08-04T17:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_308.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-32025-0_29"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32025-0_29'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32025-0_29'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32025-0_29'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-32025-0_29'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      22 PREDICATES      80 URIs      73 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-32025-0_29 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nfe399bf02f6b495f90ef4e1adb1fd6a9
4 schema:datePublished 2016-03-25
5 schema:datePublishedReg 2016-03-25
6 schema:description Enabling semantically rich query paradigms is one of the core challenges of current information systems research. In this context, due to their importance and ubiquity in natural language, analogy queries are of particular interest. Current developments in natural language processing and machine learning resulted in some very promising algorithms relying on deep learning neural word embeddings which might contribute to finally realizing analogy queries. However, it is still quite unclear how well these algorithms work from a semantic point of view. One of the problems is that there is no clear consensus on the intended semantics of analogy queries. Furthermore, there are no suitable benchmark dataset available respecting the semantic properties of real-life analogies. Therefore, in this, paper, we discuss the challenges of benchmarking the semantics of analogy query algorithms with a special focus on neural embeddings. We also introduce the AGS analogy benchmark dataset which rectifies many weaknesses of established datasets. Finally, our experiments evaluating state-of-the-art algorithms underline the need for further research in this promising field.
7 schema:editor N5168ce4c38524865bd131617c3c3e227
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N18da7950a6e042e2865ba21b8425b5b0
11 schema:keywords algorithm
12 analogy
13 art algorithms
14 benchmark datasets
15 capability
16 challenges
17 clear consensus
18 consensus
19 context
20 core challenges
21 current developments
22 dataset
23 development
24 embedding
25 experiments
26 field
27 focus
28 further research
29 importance
30 information systems research
31 interest
32 language
33 language processing
34 learning
35 machine learning
36 natural language
37 natural language processing
38 need
39 neural embeddings
40 neural word embeddings
41 paper
42 paradigm
43 particular interest
44 point
45 problem
46 processing
47 promising algorithm
48 promising field
49 properties
50 queries
51 query algorithm
52 query paradigm
53 querying algorithm
54 research
55 semantic capabilities
56 semantic point
57 semantic properties
58 semantics
59 special focus
60 state
61 suitable benchmark dataset
62 systems research
63 ubiquity
64 view
65 weakness
66 word embeddings
67 schema:name Benchmarking Semantic Capabilities of Analogy Querying Algorithms
68 schema:pagination 463-478
69 schema:productId N0456ed2a69f44b8eb2802d0548dd5c5e
70 N08a5fe8c8c464950bcf77c61e52bab2b
71 schema:publisher Nb4ab3b9c8613465f8e9d88597f995fd2
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038291273
73 https://doi.org/10.1007/978-3-319-32025-0_29
74 schema:sdDatePublished 2022-08-04T17:19
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N0e48f84146054e07b7426b79a780bfe3
77 schema:url https://doi.org/10.1007/978-3-319-32025-0_29
78 sgo:license sg:explorer/license/
79 sgo:sdDataset chapters
80 rdf:type schema:Chapter
81 N0456ed2a69f44b8eb2802d0548dd5c5e schema:name dimensions_id
82 schema:value pub.1038291273
83 rdf:type schema:PropertyValue
84 N08a5fe8c8c464950bcf77c61e52bab2b schema:name doi
85 schema:value 10.1007/978-3-319-32025-0_29
86 rdf:type schema:PropertyValue
87 N0e48f84146054e07b7426b79a780bfe3 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N0ef3c3b6108d450d86bf5c3188545834 schema:affiliation grid-institutes:grid.6738.a
90 schema:familyName Kulkarni
91 schema:givenName Pratima
92 rdf:type schema:Person
93 N17aa9d3c7b8d4732be521925a6cb14c0 rdf:first N74c9029dc0b74d8c9d5dae824c5a5bb3
94 rdf:rest N65dd7f46f2e6410aaeb11194ba946a03
95 N18da7950a6e042e2865ba21b8425b5b0 schema:isbn 978-3-319-32024-3
96 978-3-319-32025-0
97 schema:name Database Systems for Advanced Applications
98 rdf:type schema:Book
99 N22ce2e76bb804dfdbb0d392cbaef7463 schema:familyName Wu
100 schema:givenName Weili
101 rdf:type schema:Person
102 N37f3779b9a2f460caac3af020aa09331 schema:affiliation grid-institutes:grid.6738.a
103 schema:familyName Thakkar
104 schema:givenName Ravi
105 rdf:type schema:Person
106 N45d39b638bde46aaa52fc97e678f47cd schema:familyName Navathe
107 schema:givenName Shamkant B.
108 rdf:type schema:Person
109 N5168ce4c38524865bd131617c3c3e227 rdf:first N45d39b638bde46aaa52fc97e678f47cd
110 rdf:rest Naae88151b5e24c3990229df1385ccf0d
111 N65dd7f46f2e6410aaeb11194ba946a03 rdf:first Neaf22147199440b69fe503c626f336eb
112 rdf:rest Nfd6ea0cf69b04bc08768209adaa8866f
113 N74c9029dc0b74d8c9d5dae824c5a5bb3 schema:familyName Du
114 schema:givenName Xiaoyong
115 rdf:type schema:Person
116 N94a5f06289e04721b64c46c4f2210000 schema:affiliation grid-institutes:grid.6738.a
117 schema:familyName Ahamed
118 schema:givenName Athiq
119 rdf:type schema:Person
120 N9d57020285dd435d9490235862d2b2dc rdf:first Nd3af8f28c84046368eb0b88b4cfd1263
121 rdf:rest N17aa9d3c7b8d4732be521925a6cb14c0
122 Naae88151b5e24c3990229df1385ccf0d rdf:first N22ce2e76bb804dfdbb0d392cbaef7463
123 rdf:rest N9d57020285dd435d9490235862d2b2dc
124 Nab0733a477e34263a019ed34fba29718 schema:familyName Xiong
125 schema:givenName Hui
126 rdf:type schema:Person
127 Nb4ab3b9c8613465f8e9d88597f995fd2 schema:name Springer Nature
128 rdf:type schema:Organisation
129 Nba6b95fcc7ce42b0b20d543b85fb73c7 rdf:first N94a5f06289e04721b64c46c4f2210000
130 rdf:rest Necdb31e409b74ec0af65ab228cf91298
131 Nd3af8f28c84046368eb0b88b4cfd1263 schema:familyName Shekhar
132 schema:givenName Shashi
133 rdf:type schema:Person
134 Neaf22147199440b69fe503c626f336eb schema:familyName Wang
135 schema:givenName X. Sean
136 rdf:type schema:Person
137 Necdb31e409b74ec0af65ab228cf91298 rdf:first N0ef3c3b6108d450d86bf5c3188545834
138 rdf:rest Nefce128205b24776a90ca35b31234585
139 Nefce128205b24776a90ca35b31234585 rdf:first N37f3779b9a2f460caac3af020aa09331
140 rdf:rest rdf:nil
141 Nfd6ea0cf69b04bc08768209adaa8866f rdf:first Nab0733a477e34263a019ed34fba29718
142 rdf:rest rdf:nil
143 Nfe399bf02f6b495f90ef4e1adb1fd6a9 rdf:first sg:person.011355173745.44
144 rdf:rest Nba6b95fcc7ce42b0b20d543b85fb73c7
145 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
146 schema:name Information and Computing Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
149 schema:name Artificial Intelligence and Image Processing
150 rdf:type schema:DefinedTerm
151 sg:person.011355173745.44 schema:affiliation grid-institutes:grid.6738.a
152 schema:familyName Lofi
153 schema:givenName Christoph
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011355173745.44
155 rdf:type schema:Person
156 grid-institutes:grid.6738.a schema:alternateName Technische Universität Braunschweig, 38106, Brunswick, Germany
157 schema:name Technische Universität Braunschweig, 38106, Brunswick, Germany
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...