Atom Optics in a Nutshell View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016-12-14

AUTHORS

Pierre Meystre

ABSTRACT

This chapter presents a brief introduction to atom optics, assuming only a basic knowledge of elementary physics ideas such as conservation of energy and conservation of momentum, and making only limited use of elementary algebra. Starting from a historical perspective we introduce the idea of wave-particle duality, a fundamental tenet of quantum mechanics that teaches us that atoms, just like light, behave sometimes as waves, and sometimes as particles. It is this profound but counter-intuitive property that allows one to do with atoms much of what is familiar from conventional optics. However, because in contrast to photons atoms have a mass, there are also fundamental differences between the two that have important consequences. In particular this property opens up a number of applications that are ill-suited for conventional optical methods. After explaining why it is particularly advantageous to work at temperatures close to absolute zero to benefit most readily from the wave nature of atoms we discuss several of these applications, concentrating primarily on the promise of atom microscopes and atom interferometers in addressing fundamental and extraordinarily challenging questions at the frontier of current physics knowledge. More... »

PAGES

337-357

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-31903-2_14

DOI

http://dx.doi.org/10.1007/978-3-319-31903-2_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008595072


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics and College of Optical Sciences, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Physics and College of Optical Sciences, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meystre", 
        "givenName": "Pierre", 
        "id": "sg:person.010042543335.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-12-14", 
    "datePublishedReg": "2016-12-14", 
    "description": "This chapter presents a brief introduction to atom optics, assuming only a basic knowledge of elementary physics ideas such as conservation of energy and conservation of momentum, and making only limited use of elementary algebra. Starting from a historical perspective we introduce the idea of wave-particle duality, a fundamental tenet of quantum mechanics that teaches us that atoms, just like light, behave sometimes as waves, and sometimes as particles. It is this profound but counter-intuitive property that allows one to do with atoms much of what is familiar from conventional optics. However, because in contrast to photons atoms have a mass, there are also fundamental differences between the two that have important consequences. In particular this property opens up a number of applications that are ill-suited for conventional optical methods. After explaining why it is particularly advantageous to work at temperatures close to absolute zero to benefit most readily from the wave nature of atoms we discuss several of these applications, concentrating primarily on the promise of atom microscopes and atom interferometers in addressing fundamental and extraordinarily challenging questions at the frontier of current physics knowledge.", 
    "editor": [
      {
        "familyName": "Al-Amri", 
        "givenName": "Mohammad D.", 
        "type": "Person"
      }, 
      {
        "familyName": "El-Gomati", 
        "givenName": "Mohamed", 
        "type": "Person"
      }, 
      {
        "familyName": "Zubairy", 
        "givenName": "M. Suhail", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-31903-2_14", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-31902-5", 
        "978-3-319-31903-2"
      ], 
      "name": "Optics in Our Time", 
      "type": "Book"
    }, 
    "keywords": [
      "atom optics", 
      "wave-particle duality", 
      "conventional optical methods", 
      "counter-intuitive properties", 
      "atom interferometer", 
      "conventional optics", 
      "quantum mechanics", 
      "wave nature", 
      "physics ideas", 
      "optical methods", 
      "optics", 
      "atoms", 
      "conservation of energy", 
      "conservation of momentum", 
      "physics knowledge", 
      "number of applications", 
      "interferometer", 
      "momentum", 
      "microscope", 
      "brief introduction", 
      "energy", 
      "waves", 
      "important consequences", 
      "particles", 
      "light", 
      "properties", 
      "mechanics", 
      "mass", 
      "applications", 
      "temperature", 
      "fundamental differences", 
      "duality", 
      "frontier", 
      "elementary algebra", 
      "nature", 
      "promise", 
      "contrast", 
      "method", 
      "idea", 
      "introduction", 
      "consequences", 
      "conservation", 
      "number", 
      "basic knowledge", 
      "chapter", 
      "use", 
      "limited use", 
      "historical perspective", 
      "fundamental tenets", 
      "knowledge", 
      "nutshell", 
      "questions", 
      "differences", 
      "algebra", 
      "perspective", 
      "tenets", 
      "elementary physics ideas", 
      "photons atoms", 
      "atom microscopes", 
      "current physics knowledge"
    ], 
    "name": "Atom Optics in a Nutshell", 
    "pagination": "337-357", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008595072"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-31903-2_14"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-31903-2_14", 
      "https://app.dimensions.ai/details/publication/pub.1008595072"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_203.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-31903-2_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-31903-2_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-31903-2_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-31903-2_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-31903-2_14'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      23 PREDICATES      84 URIs      77 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-31903-2_14 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N52d633a9f6df43c898574c43615319d1
4 schema:datePublished 2016-12-14
5 schema:datePublishedReg 2016-12-14
6 schema:description This chapter presents a brief introduction to atom optics, assuming only a basic knowledge of elementary physics ideas such as conservation of energy and conservation of momentum, and making only limited use of elementary algebra. Starting from a historical perspective we introduce the idea of wave-particle duality, a fundamental tenet of quantum mechanics that teaches us that atoms, just like light, behave sometimes as waves, and sometimes as particles. It is this profound but counter-intuitive property that allows one to do with atoms much of what is familiar from conventional optics. However, because in contrast to photons atoms have a mass, there are also fundamental differences between the two that have important consequences. In particular this property opens up a number of applications that are ill-suited for conventional optical methods. After explaining why it is particularly advantageous to work at temperatures close to absolute zero to benefit most readily from the wave nature of atoms we discuss several of these applications, concentrating primarily on the promise of atom microscopes and atom interferometers in addressing fundamental and extraordinarily challenging questions at the frontier of current physics knowledge.
7 schema:editor N52a0e6b5bc8a4e958a2dbb4de907e7d4
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N50901843969147f7a558ffc809e544f3
12 schema:keywords algebra
13 applications
14 atom interferometer
15 atom microscopes
16 atom optics
17 atoms
18 basic knowledge
19 brief introduction
20 chapter
21 consequences
22 conservation
23 conservation of energy
24 conservation of momentum
25 contrast
26 conventional optical methods
27 conventional optics
28 counter-intuitive properties
29 current physics knowledge
30 differences
31 duality
32 elementary algebra
33 elementary physics ideas
34 energy
35 frontier
36 fundamental differences
37 fundamental tenets
38 historical perspective
39 idea
40 important consequences
41 interferometer
42 introduction
43 knowledge
44 light
45 limited use
46 mass
47 mechanics
48 method
49 microscope
50 momentum
51 nature
52 number
53 number of applications
54 nutshell
55 optical methods
56 optics
57 particles
58 perspective
59 photons atoms
60 physics ideas
61 physics knowledge
62 promise
63 properties
64 quantum mechanics
65 questions
66 temperature
67 tenets
68 use
69 wave nature
70 wave-particle duality
71 waves
72 schema:name Atom Optics in a Nutshell
73 schema:pagination 337-357
74 schema:productId N1a165cf136cc468da699ca4aec753c64
75 N3420671a05bd43fcbf2195f149e6828c
76 schema:publisher Ncadd736577d9460cb7541e2c5e8d3d92
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008595072
78 https://doi.org/10.1007/978-3-319-31903-2_14
79 schema:sdDatePublished 2022-01-01T19:11
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Ne490e20660b84d058bb982a60ec98309
82 schema:url https://doi.org/10.1007/978-3-319-31903-2_14
83 sgo:license sg:explorer/license/
84 sgo:sdDataset chapters
85 rdf:type schema:Chapter
86 N1a165cf136cc468da699ca4aec753c64 schema:name dimensions_id
87 schema:value pub.1008595072
88 rdf:type schema:PropertyValue
89 N2cc1d0676d9945e39fa984d35a83a3b7 schema:familyName Zubairy
90 schema:givenName M. Suhail
91 rdf:type schema:Person
92 N3420671a05bd43fcbf2195f149e6828c schema:name doi
93 schema:value 10.1007/978-3-319-31903-2_14
94 rdf:type schema:PropertyValue
95 N50901843969147f7a558ffc809e544f3 schema:isbn 978-3-319-31902-5
96 978-3-319-31903-2
97 schema:name Optics in Our Time
98 rdf:type schema:Book
99 N52a0e6b5bc8a4e958a2dbb4de907e7d4 rdf:first Nf9d708f2f01a4e7bbd37a42e9d257b42
100 rdf:rest Nf0278e2f98744fd8b16c8acd82ed1232
101 N52d633a9f6df43c898574c43615319d1 rdf:first sg:person.010042543335.11
102 rdf:rest rdf:nil
103 N7172d29172dd4ad19395151bdee7a658 schema:familyName El-Gomati
104 schema:givenName Mohamed
105 rdf:type schema:Person
106 Ncadd736577d9460cb7541e2c5e8d3d92 schema:name Springer Nature
107 rdf:type schema:Organisation
108 Ne490e20660b84d058bb982a60ec98309 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nf0278e2f98744fd8b16c8acd82ed1232 rdf:first N7172d29172dd4ad19395151bdee7a658
111 rdf:rest Nf424f254b1af4b5d963f58732905b998
112 Nf424f254b1af4b5d963f58732905b998 rdf:first N2cc1d0676d9945e39fa984d35a83a3b7
113 rdf:rest rdf:nil
114 Nf9d708f2f01a4e7bbd37a42e9d257b42 schema:familyName Al-Amri
115 schema:givenName Mohammad D.
116 rdf:type schema:Person
117 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
118 schema:name Physical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
121 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
122 rdf:type schema:DefinedTerm
123 sg:person.010042543335.11 schema:affiliation grid-institutes:grid.134563.6
124 schema:familyName Meystre
125 schema:givenName Pierre
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010042543335.11
127 rdf:type schema:Person
128 grid-institutes:grid.134563.6 schema:alternateName Department of Physics and College of Optical Sciences, University of Arizona, 85721, Tucson, AZ, USA
129 schema:name Department of Physics and College of Optical Sciences, University of Arizona, 85721, Tucson, AZ, USA
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...