Multi-modal Brain Tumor Segmentation Using Stacked Denoising Autoencoders View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-03-19

AUTHORS

Kiran Vaidhya , Subramaniam Thirunavukkarasu , Varghese Alex , Ganapathy Krishnamurthi

ABSTRACT

Accurate Segmentation of Gliomas from Magnetic Resonance Images (MRI) is required for treatment planning and monitoring disease progression. As manual segmentation is time consuming, an automated method can be useful, especially in large clinical studies. Since Gliomas have variable shape and texture, automated segmentation is a challenging task and a number of techniques based on machine learning algorithms have been proposed. In the recent past, deep learning methods have been tested on various image processing tasks and found to outperform state of the art techniques. In our work, we consider stacked denoising autoencoder (SDAE), a deep neural network that reconstructs its input. We trained a three layer SDAE where the input layer was a concatenation of fixed size 3D patches (11×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\times \,$$\end{document}11×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\times \,$$\end{document}3 voxels/neurons) from multiple MRI sequences. The 2nd, 3rd and 4th layers had 3000, 1000 and 500 neurons respectively. Two different networks were trained one with high grade glioma (HGG) data and other with a combination of high grade and low grade gliomas (LGG). Each network was trained with 35 patients for pre-training and 21 patients for fine tuning. The predictions from the two networks were combined based on maximum posterior probability. For HGG data, the whole tumor dice score was .81, tumor core was .68 and active tumor was .64 (n=220\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=220$$\end{document} patients). For LGG data, the whole tumor dice score was .72, tumor core was .42 and active tumor was .29 (n=54\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=54$$\end{document} patients). More... »

PAGES

181-194

Book

TITLE

Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries

ISBN

978-3-319-30857-9
978-3-319-30858-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-30858-6_16

DOI

http://dx.doi.org/10.1007/978-3-319-30858-6_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018315307


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Madras, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Indian Institute of Technology Madras, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vaidhya", 
        "givenName": "Kiran", 
        "id": "sg:person.012757116637.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012757116637.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Madras, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Indian Institute of Technology Madras, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thirunavukkarasu", 
        "givenName": "Subramaniam", 
        "id": "sg:person.015147440237.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015147440237.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Madras, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Indian Institute of Technology Madras, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alex", 
        "givenName": "Varghese", 
        "id": "sg:person.010634710437.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010634710437.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Madras, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Indian Institute of Technology Madras, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishnamurthi", 
        "givenName": "Ganapathy", 
        "id": "sg:person.013774661125.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774661125.64"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-03-19", 
    "datePublishedReg": "2016-03-19", 
    "description": "Accurate Segmentation of Gliomas from Magnetic Resonance Images (MRI) is required for treatment planning and monitoring disease progression. As manual segmentation is time consuming, an automated method can be useful, especially in large clinical studies. Since Gliomas have variable shape and texture, automated segmentation is a challenging task and a number of techniques based on machine learning algorithms have been proposed. In the recent past, deep learning methods have been tested on various image processing tasks and found to outperform state of the art techniques. In our work, we consider stacked denoising autoencoder (SDAE), a deep neural network that reconstructs its input. We trained a three layer SDAE where the input layer was a concatenation of fixed size 3D patches (11\u00d7\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\,\\times \\,$$\\end{document}11\u00d7\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\,\\times \\,$$\\end{document}3 voxels/neurons) from multiple MRI sequences. The 2nd, 3rd and 4th layers had 3000, 1000 and 500 neurons respectively. Two different networks were trained one with high grade glioma (HGG) data and other with a combination of high grade and low grade gliomas (LGG). Each network was trained with 35 patients for pre-training and 21 patients for fine tuning. The predictions from the two networks were combined based on maximum posterior probability. For HGG data, the whole tumor dice score was .81, tumor core was .68 and active tumor was .64 (n=220\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n=220$$\\end{document} patients). For LGG data, the whole tumor dice score was .72, tumor core was .42 and active tumor was .29 (n=54\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n=54$$\\end{document} patients).", 
    "editor": [
      {
        "familyName": "Crimi", 
        "givenName": "Alessandro", 
        "type": "Person"
      }, 
      {
        "familyName": "Menze", 
        "givenName": "Bjoern", 
        "type": "Person"
      }, 
      {
        "familyName": "Maier", 
        "givenName": "Oskar", 
        "type": "Person"
      }, 
      {
        "familyName": "Reyes", 
        "givenName": "Mauricio", 
        "type": "Person"
      }, 
      {
        "familyName": "Handels", 
        "givenName": "Heinz", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-30858-6_16", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-30857-9", 
        "978-3-319-30858-6"
      ], 
      "name": "Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries", 
      "type": "Book"
    }, 
    "keywords": [
      "Dice score", 
      "deep neural networks", 
      "deep learning methods", 
      "image processing tasks", 
      "brain tumor segmentation", 
      "accurate segmentation", 
      "outperform state", 
      "Denoising Autoencoder", 
      "neural network", 
      "tumor segmentation", 
      "maximum posterior probability", 
      "magnetic resonance images", 
      "learning method", 
      "input layer", 
      "art techniques", 
      "multiple MRI sequences", 
      "different networks", 
      "processing tasks", 
      "manual segmentation", 
      "challenging task", 
      "segmentation", 
      "number of techniques", 
      "autoencoder", 
      "network", 
      "posterior probability", 
      "task", 
      "tumor core", 
      "resonance images", 
      "SDAE", 
      "algorithm", 
      "machine", 
      "variable shape", 
      "recent past", 
      "images", 
      "concatenation", 
      "fine tuning", 
      "technique", 
      "MRI sequences", 
      "glioma data", 
      "planning", 
      "data", 
      "treatment planning", 
      "method", 
      "input", 
      "tuning", 
      "texture", 
      "work", 
      "core", 
      "probability", 
      "prediction", 
      "number", 
      "time", 
      "sequence", 
      "layer", 
      "patches", 
      "past", 
      "state", 
      "combination", 
      "shape", 
      "low grade gliomas", 
      "active tumor", 
      "scores", 
      "neurons", 
      "grade gliomas", 
      "study", 
      "large clinical studies", 
      "high grade", 
      "grade", 
      "clinical studies", 
      "gliomas", 
      "patients", 
      "tumors", 
      "disease progression", 
      "progression", 
      "layer SDAE", 
      "size 3D patches", 
      "high grade glioma (HGG) data", 
      "grade glioma (HGG) data", 
      "HGG data", 
      "whole tumor dice score", 
      "tumor dice score", 
      "LGG data", 
      "Multi-modal Brain Tumor Segmentation"
    ], 
    "name": "Multi-modal Brain Tumor Segmentation Using Stacked Denoising Autoencoders", 
    "pagination": "181-194", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018315307"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-30858-6_16"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-30858-6_16", 
      "https://app.dimensions.ai/details/publication/pub.1018315307"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_336.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-30858-6_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-30858-6_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-30858-6_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-30858-6_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-30858-6_16'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      23 PREDICATES      108 URIs      101 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-30858-6_16 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4a7401bd9afc4977ad2fbcf3fddb09d1
4 schema:datePublished 2016-03-19
5 schema:datePublishedReg 2016-03-19
6 schema:description Accurate Segmentation of Gliomas from Magnetic Resonance Images (MRI) is required for treatment planning and monitoring disease progression. As manual segmentation is time consuming, an automated method can be useful, especially in large clinical studies. Since Gliomas have variable shape and texture, automated segmentation is a challenging task and a number of techniques based on machine learning algorithms have been proposed. In the recent past, deep learning methods have been tested on various image processing tasks and found to outperform state of the art techniques. In our work, we consider stacked denoising autoencoder (SDAE), a deep neural network that reconstructs its input. We trained a three layer SDAE where the input layer was a concatenation of fixed size 3D patches (11×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\times \,$$\end{document}11×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\,\times \,$$\end{document}3 voxels/neurons) from multiple MRI sequences. The 2nd, 3rd and 4th layers had 3000, 1000 and 500 neurons respectively. Two different networks were trained one with high grade glioma (HGG) data and other with a combination of high grade and low grade gliomas (LGG). Each network was trained with 35 patients for pre-training and 21 patients for fine tuning. The predictions from the two networks were combined based on maximum posterior probability. For HGG data, the whole tumor dice score was .81, tumor core was .68 and active tumor was .64 (n=220\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=220$$\end{document} patients). For LGG data, the whole tumor dice score was .72, tumor core was .42 and active tumor was .29 (n=54\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=54$$\end{document} patients).
7 schema:editor N9fa9dd1f1ce94a0d9948f3b8b7f39eaa
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4703b2661ce24773ad79dde477f97cb2
12 schema:keywords Denoising Autoencoder
13 Dice score
14 HGG data
15 LGG data
16 MRI sequences
17 Multi-modal Brain Tumor Segmentation
18 SDAE
19 accurate segmentation
20 active tumor
21 algorithm
22 art techniques
23 autoencoder
24 brain tumor segmentation
25 challenging task
26 clinical studies
27 combination
28 concatenation
29 core
30 data
31 deep learning methods
32 deep neural networks
33 different networks
34 disease progression
35 fine tuning
36 glioma data
37 gliomas
38 grade
39 grade glioma (HGG) data
40 grade gliomas
41 high grade
42 high grade glioma (HGG) data
43 image processing tasks
44 images
45 input
46 input layer
47 large clinical studies
48 layer
49 layer SDAE
50 learning method
51 low grade gliomas
52 machine
53 magnetic resonance images
54 manual segmentation
55 maximum posterior probability
56 method
57 multiple MRI sequences
58 network
59 neural network
60 neurons
61 number
62 number of techniques
63 outperform state
64 past
65 patches
66 patients
67 planning
68 posterior probability
69 prediction
70 probability
71 processing tasks
72 progression
73 recent past
74 resonance images
75 scores
76 segmentation
77 sequence
78 shape
79 size 3D patches
80 state
81 study
82 task
83 technique
84 texture
85 time
86 treatment planning
87 tumor core
88 tumor dice score
89 tumor segmentation
90 tumors
91 tuning
92 variable shape
93 whole tumor dice score
94 work
95 schema:name Multi-modal Brain Tumor Segmentation Using Stacked Denoising Autoencoders
96 schema:pagination 181-194
97 schema:productId Nb304a821b6b24fbe8fcedbbed3fd78af
98 Nc00dfa0dd9a94da4923af2843a1d012b
99 schema:publisher Naacc1f11461d4c879db356bbdcfc0903
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018315307
101 https://doi.org/10.1007/978-3-319-30858-6_16
102 schema:sdDatePublished 2021-12-01T20:05
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher N34f23157897f46b0b98139ca9aec9eb7
105 schema:url https://doi.org/10.1007/978-3-319-30858-6_16
106 sgo:license sg:explorer/license/
107 sgo:sdDataset chapters
108 rdf:type schema:Chapter
109 N33f434c47ef341f0b6eddb8d8977d944 rdf:first Ndf4a668c7df7419e9989d5c84ea90cd1
110 rdf:rest Nfa443b21775e40039577e03d5c9116a3
111 N34f23157897f46b0b98139ca9aec9eb7 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N3a04961d524d49da996afaa68197f690 schema:familyName Maier
114 schema:givenName Oskar
115 rdf:type schema:Person
116 N4703b2661ce24773ad79dde477f97cb2 schema:isbn 978-3-319-30857-9
117 978-3-319-30858-6
118 schema:name Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
119 rdf:type schema:Book
120 N4a7401bd9afc4977ad2fbcf3fddb09d1 rdf:first sg:person.012757116637.22
121 rdf:rest Nd985847c1ad745dcbbcb82dbd40ed376
122 N7615b218070d451893be499a38b587c1 rdf:first sg:person.013774661125.64
123 rdf:rest rdf:nil
124 N798bd058040e4476a65021c5d50e1a64 schema:familyName Crimi
125 schema:givenName Alessandro
126 rdf:type schema:Person
127 N911b3dced07c4b98b9b68be4d84036ce schema:familyName Handels
128 schema:givenName Heinz
129 rdf:type schema:Person
130 N94e7ae9ad82b4f9fb2f602ffd3d92555 rdf:first Nfc4c31d0967b44d7a0a45f8963db2124
131 rdf:rest Na295bb4731a746abaedde54ab42bfabe
132 N9fa9dd1f1ce94a0d9948f3b8b7f39eaa rdf:first N798bd058040e4476a65021c5d50e1a64
133 rdf:rest N33f434c47ef341f0b6eddb8d8977d944
134 Na295bb4731a746abaedde54ab42bfabe rdf:first N911b3dced07c4b98b9b68be4d84036ce
135 rdf:rest rdf:nil
136 Naacc1f11461d4c879db356bbdcfc0903 schema:name Springer Nature
137 rdf:type schema:Organisation
138 Nb304a821b6b24fbe8fcedbbed3fd78af schema:name doi
139 schema:value 10.1007/978-3-319-30858-6_16
140 rdf:type schema:PropertyValue
141 Nc00dfa0dd9a94da4923af2843a1d012b schema:name dimensions_id
142 schema:value pub.1018315307
143 rdf:type schema:PropertyValue
144 Nc3a67cbeab8745d2b405b87742842a46 rdf:first sg:person.010634710437.18
145 rdf:rest N7615b218070d451893be499a38b587c1
146 Nd985847c1ad745dcbbcb82dbd40ed376 rdf:first sg:person.015147440237.79
147 rdf:rest Nc3a67cbeab8745d2b405b87742842a46
148 Ndf4a668c7df7419e9989d5c84ea90cd1 schema:familyName Menze
149 schema:givenName Bjoern
150 rdf:type schema:Person
151 Nfa443b21775e40039577e03d5c9116a3 rdf:first N3a04961d524d49da996afaa68197f690
152 rdf:rest N94e7ae9ad82b4f9fb2f602ffd3d92555
153 Nfc4c31d0967b44d7a0a45f8963db2124 schema:familyName Reyes
154 schema:givenName Mauricio
155 rdf:type schema:Person
156 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
157 schema:name Information and Computing Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
160 schema:name Artificial Intelligence and Image Processing
161 rdf:type schema:DefinedTerm
162 sg:person.010634710437.18 schema:affiliation grid-institutes:grid.417969.4
163 schema:familyName Alex
164 schema:givenName Varghese
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010634710437.18
166 rdf:type schema:Person
167 sg:person.012757116637.22 schema:affiliation grid-institutes:grid.417969.4
168 schema:familyName Vaidhya
169 schema:givenName Kiran
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012757116637.22
171 rdf:type schema:Person
172 sg:person.013774661125.64 schema:affiliation grid-institutes:grid.417969.4
173 schema:familyName Krishnamurthi
174 schema:givenName Ganapathy
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774661125.64
176 rdf:type schema:Person
177 sg:person.015147440237.79 schema:affiliation grid-institutes:grid.417969.4
178 schema:familyName Thirunavukkarasu
179 schema:givenName Subramaniam
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015147440237.79
181 rdf:type schema:Person
182 grid-institutes:grid.417969.4 schema:alternateName Indian Institute of Technology Madras, Chennai, India
183 schema:name Indian Institute of Technology Madras, Chennai, India
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...