Pose Graph Compression for Laser-Based SLAM View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2016-08-26

AUTHORS

Cyrill Stachniss , Henrik Kretzschmar

ABSTRACT

The pose graph is a central data structure in graph-based SLAM approaches. It encodes the poses of the robot during data acquisition as well as spatial constraints between them. The size of the pose graph has a direct influence on the runtime and the memory requirements of a SLAM system since it is typically used to make data associations and within the optimization procedure. In this paper, we address the problem of efficient, information-theoretic compression of such pose graphs. The central question is which sensor measurements can be removed from the graph without loosing too much information. Our approach estimates the expected information gain of laser measurements with respect to the resulting occupancy grid map. It allows us to restrict the size of the pose graph depending on the information that the robot acquires about the environment. Alternatively, we can enforce a maximum number of laser scans the robot is allowed to store, which results in an any-space SLAM system. Real world experiments suggest that our approach efficiently reduces the growth of the pose graph while minimizing the loss of information in the resulting grid map. More... »

PAGES

271-287

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-29363-9_16

DOI

http://dx.doi.org/10.1007/978-3-319-29363-9_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025187438


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10388.32", 
          "name": [
            "Institute for Computer Science, University of Freiburg, Freiburg im Breisgau, Germany", 
            "Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stachniss", 
        "givenName": "Cyrill", 
        "id": "sg:person.015152144445.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152144445.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Computer Science, University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Institute for Computer Science, University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kretzschmar", 
        "givenName": "Henrik", 
        "id": "sg:person.015045121627.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045121627.26"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-08-26", 
    "datePublishedReg": "2016-08-26", 
    "description": "The pose graph is a central data structure in graph-based SLAM approaches. It encodes the poses of the robot during data acquisition as well as spatial constraints between them. The size of the pose graph has a direct influence on the runtime and the memory requirements of a SLAM system since it is typically used to make data associations and within the optimization procedure. In this paper, we address the problem of efficient, information-theoretic compression of such pose graphs. The central question is which sensor measurements can be removed from the graph without loosing too much information. Our approach estimates the expected information gain of laser measurements with respect to the resulting occupancy grid map. It allows us to restrict the size of the pose graph depending on the information that the robot acquires about the environment. Alternatively, we can enforce a maximum number of laser scans the robot is allowed to store, which results in an any-space SLAM system. Real world experiments suggest that our approach efficiently reduces the growth of the pose graph while minimizing the loss of information in the resulting grid map.", 
    "editor": [
      {
        "familyName": "Christensen", 
        "givenName": "Henrik I.", 
        "type": "Person"
      }, 
      {
        "familyName": "Khatib", 
        "givenName": "Oussama", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-29363-9_16", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-29362-2", 
        "978-3-319-29363-9"
      ], 
      "name": "Robotics Research", 
      "type": "Book"
    }, 
    "keywords": [
      "pose graph", 
      "SLAM system", 
      "grid map", 
      "graph-based SLAM approach", 
      "occupancy grid map", 
      "central data structure", 
      "real-world experiments", 
      "graph compression", 
      "SLAM approach", 
      "loss of information", 
      "data structure", 
      "world experiments", 
      "data association", 
      "memory requirements", 
      "information gain", 
      "robot", 
      "sensor measurements", 
      "data acquisition", 
      "graph", 
      "spatial constraints", 
      "information", 
      "runtime", 
      "SLAM", 
      "pose", 
      "optimization procedure", 
      "maximum number", 
      "maps", 
      "compression", 
      "system", 
      "requirements", 
      "constraints", 
      "environment", 
      "acquisition", 
      "laser measurements", 
      "experiments", 
      "number", 
      "size", 
      "gain", 
      "respect", 
      "questions", 
      "structure", 
      "procedure", 
      "direct influence", 
      "central question", 
      "measurements", 
      "loss", 
      "growth", 
      "influence", 
      "association", 
      "laser", 
      "approach", 
      "problem", 
      "paper"
    ], 
    "name": "Pose Graph Compression for Laser-Based SLAM", 
    "pagination": "271-287", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025187438"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-29363-9_16"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-29363-9_16", 
      "https://app.dimensions.ai/details/publication/pub.1025187438"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_147.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-29363-9_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-29363-9_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-29363-9_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-29363-9_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-29363-9_16'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      22 PREDICATES      77 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-29363-9_16 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N967add272f00400cb325f85e8111c8ba
4 schema:datePublished 2016-08-26
5 schema:datePublishedReg 2016-08-26
6 schema:description The pose graph is a central data structure in graph-based SLAM approaches. It encodes the poses of the robot during data acquisition as well as spatial constraints between them. The size of the pose graph has a direct influence on the runtime and the memory requirements of a SLAM system since it is typically used to make data associations and within the optimization procedure. In this paper, we address the problem of efficient, information-theoretic compression of such pose graphs. The central question is which sensor measurements can be removed from the graph without loosing too much information. Our approach estimates the expected information gain of laser measurements with respect to the resulting occupancy grid map. It allows us to restrict the size of the pose graph depending on the information that the robot acquires about the environment. Alternatively, we can enforce a maximum number of laser scans the robot is allowed to store, which results in an any-space SLAM system. Real world experiments suggest that our approach efficiently reduces the growth of the pose graph while minimizing the loss of information in the resulting grid map.
7 schema:editor N69d83f4765c5444b9e4710ab8438ba68
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N9fe16316393f4427b6e721f2efc2755c
11 schema:keywords SLAM
12 SLAM approach
13 SLAM system
14 acquisition
15 approach
16 association
17 central data structure
18 central question
19 compression
20 constraints
21 data acquisition
22 data association
23 data structure
24 direct influence
25 environment
26 experiments
27 gain
28 graph
29 graph compression
30 graph-based SLAM approach
31 grid map
32 growth
33 influence
34 information
35 information gain
36 laser
37 laser measurements
38 loss
39 loss of information
40 maps
41 maximum number
42 measurements
43 memory requirements
44 number
45 occupancy grid map
46 optimization procedure
47 paper
48 pose
49 pose graph
50 problem
51 procedure
52 questions
53 real-world experiments
54 requirements
55 respect
56 robot
57 runtime
58 sensor measurements
59 size
60 spatial constraints
61 structure
62 system
63 world experiments
64 schema:name Pose Graph Compression for Laser-Based SLAM
65 schema:pagination 271-287
66 schema:productId N00bb17aafddf4ad19081604900de922b
67 N0c6d354acca346efb09c5fa56c970352
68 schema:publisher Ned2b7da11a9c465fb78db0e350711672
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025187438
70 https://doi.org/10.1007/978-3-319-29363-9_16
71 schema:sdDatePublished 2022-12-01T06:47
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Nebeca63a4981456d93deeb9a6ca3f0a6
74 schema:url https://doi.org/10.1007/978-3-319-29363-9_16
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N00bb17aafddf4ad19081604900de922b schema:name doi
79 schema:value 10.1007/978-3-319-29363-9_16
80 rdf:type schema:PropertyValue
81 N0c6d354acca346efb09c5fa56c970352 schema:name dimensions_id
82 schema:value pub.1025187438
83 rdf:type schema:PropertyValue
84 N69d10a59d46040d29a2dc9e2955e6f41 schema:familyName Khatib
85 schema:givenName Oussama
86 rdf:type schema:Person
87 N69d83f4765c5444b9e4710ab8438ba68 rdf:first Ncacce276a19e4c6ebc9750ec5cf89040
88 rdf:rest N9541961f976647b3b02b4cacfadb54be
89 N90b76a6a2d944837ad244bda6c43ef42 rdf:first sg:person.015045121627.26
90 rdf:rest rdf:nil
91 N9541961f976647b3b02b4cacfadb54be rdf:first N69d10a59d46040d29a2dc9e2955e6f41
92 rdf:rest rdf:nil
93 N967add272f00400cb325f85e8111c8ba rdf:first sg:person.015152144445.37
94 rdf:rest N90b76a6a2d944837ad244bda6c43ef42
95 N9fe16316393f4427b6e721f2efc2755c schema:isbn 978-3-319-29362-2
96 978-3-319-29363-9
97 schema:name Robotics Research
98 rdf:type schema:Book
99 Ncacce276a19e4c6ebc9750ec5cf89040 schema:familyName Christensen
100 schema:givenName Henrik I.
101 rdf:type schema:Person
102 Nebeca63a4981456d93deeb9a6ca3f0a6 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Ned2b7da11a9c465fb78db0e350711672 schema:name Springer Nature
105 rdf:type schema:Organisation
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
110 schema:name Information Systems
111 rdf:type schema:DefinedTerm
112 sg:person.015045121627.26 schema:affiliation grid-institutes:grid.5963.9
113 schema:familyName Kretzschmar
114 schema:givenName Henrik
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045121627.26
116 rdf:type schema:Person
117 sg:person.015152144445.37 schema:affiliation grid-institutes:grid.10388.32
118 schema:familyName Stachniss
119 schema:givenName Cyrill
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015152144445.37
121 rdf:type schema:Person
122 grid-institutes:grid.10388.32 schema:alternateName Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
123 schema:name Institute for Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
124 Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany
125 rdf:type schema:Organization
126 grid-institutes:grid.5963.9 schema:alternateName Institute for Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
127 schema:name Institute for Computer Science, University of Freiburg, Freiburg im Breisgau, Germany
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...