Context-Based Situation Recognition in Computer Vision Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Juan Gómez-Romero , Jesús García , Miguel A. Patricio , Miguel A. Serrano , José M. Molina

ABSTRACT

The availability of visual sensors and the increment of their processing capabilities have led to the development of a new generation of multi-camera systems. This increment has also conveyed new expectations and requirements that cannot be fulfilled by applying traditional fusion techniques. The ultimate objective of computer vision systems is to obtain a description of the observed scenario in terms that are both computable and human-readable, which can be seen as a specific form of situation assessment. Particularly, there is a great interest in human activity recognition in several areas such as surveillance and ambient intelligence. Simple activities can be recognized by applying pattern recognition algorithms on sensor data. However, identification of complex activities requires the development of cognitive capabilities close to human understanding. Several recent proposals combine numerical techniques and a symbolic model that represents context-dependent, background and common-sense knowledge relevant to the task. In this chapter the current challenges in the development of vision-based activity recognition systems are described, and how they can be tackled by exploiting formally represented context knowledge. Along with a review of the related literature, we describe an approach with examples in the areas of ambient intelligence and indoor security. The chapter surveys methods for context management in the literature that use symbolic knowledge models to represent and reason with context. Due to their relevance, we will pay special attention to ontology and logic-based models. More... »

PAGES

627-651

References to SciGraph publications

Book

TITLE

Context-Enhanced Information Fusion

ISBN

978-3-319-28969-4
978-3-319-28971-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-28971-7_23

DOI

http://dx.doi.org/10.1007/978-3-319-28971-7_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010304905


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Computer Science and A.I., CITIC-UGR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f3mez-Romero", 
        "givenName": "Juan", 
        "id": "sg:person.014137014241.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014137014241.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Applied Artificial Intelligence Group, Universidad Carlos III de Madrid"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda", 
        "givenName": "Jes\u00fas", 
        "id": "sg:person.015704626355.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015704626355.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Applied Artificial Intelligence Group, Universidad Carlos III de Madrid"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patricio", 
        "givenName": "Miguel A.", 
        "id": "sg:person.07732541205.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07732541205.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Applied Artificial Intelligence Group, Universidad Carlos III de Madrid"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Serrano", 
        "givenName": "Miguel A.", 
        "id": "sg:person.015337506407.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015337506407.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carlos III University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.7840.b", 
          "name": [
            "Applied Artificial Intelligence Group, Universidad Carlos III de Madrid"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Molina", 
        "givenName": "Jos\u00e9 M.", 
        "id": "sg:person.010563353054.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010563353054.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.imavis.2007.08.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000977783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1177352.1177355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003634065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2014.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003849945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.websem.2005.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006751228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-011-0698-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007919762", 
          "https://doi.org/10.1007/s00500-011-0698-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2015.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015035406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.604120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019111887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-35975-0_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020168937", 
          "https://doi.org/10.1007/978-3-642-35975-0_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-0394.2011.00600.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022301681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.websem.2004.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023875725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00779-011-0450-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025863411", 
          "https://doi.org/10.1007/s00779-011-0450-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.12.118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027249055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15327051hci2004_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031721535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15327051hci2004_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031721535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2013.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035587812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10732-010-9140-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038967371", 
          "https://doi.org/10.1007/s10732-010-9140-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207721.2013.795632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039351912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.inffus.2007.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048316910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08839510903235354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050046266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s120912126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052227343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-vis:20041147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056860964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.959335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061180384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1986.1104143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061474404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icif.2010.5711859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093550268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2000.902888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094113288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.2007.4434303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095204442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isda.2011.6121844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095477857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isda.2011.6121844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095477857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5565/rev/elcvia.240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100937717"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "The availability of visual sensors and the increment of their processing capabilities have led to the development of a new generation of multi-camera systems. This increment has also conveyed new expectations and requirements that cannot be fulfilled by applying traditional fusion techniques. The ultimate objective of computer vision systems is to obtain a description of the observed scenario in terms that are both computable and human-readable, which can be seen as a specific form of situation assessment. Particularly, there is a great interest in human activity recognition in several areas such as surveillance and ambient intelligence. Simple activities can be recognized by applying pattern recognition algorithms on sensor data. However, identification of complex activities requires the development of cognitive capabilities close to human understanding. Several recent proposals combine numerical techniques and a symbolic model that represents context-dependent, background and common-sense knowledge relevant to the task. In this chapter the current challenges in the development of vision-based activity recognition systems are described, and how they can be tackled by exploiting formally represented context knowledge. Along with a review of the related literature, we describe an approach with examples in the areas of ambient intelligence and indoor security. The chapter surveys methods for context management in the literature that use symbolic knowledge models to represent and reason with context. Due to their relevance, we will pay special attention to ontology and logic-based models.", 
    "editor": [
      {
        "familyName": "Snidaro", 
        "givenName": "Lauro", 
        "type": "Person"
      }, 
      {
        "familyName": "Garc\u00eda", 
        "givenName": "Jes\u00fas", 
        "type": "Person"
      }, 
      {
        "familyName": "Llinas", 
        "givenName": "James", 
        "type": "Person"
      }, 
      {
        "familyName": "Blasch", 
        "givenName": "Erik", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-28971-7_23", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-28969-4", 
        "978-3-319-28971-7"
      ], 
      "name": "Context-Enhanced Information Fusion", 
      "type": "Book"
    }, 
    "name": "Context-Based Situation Recognition in Computer Vision Systems", 
    "pagination": "627-651", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-28971-7_23"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "31180314fbc31845575386448819bffd1f6326f3f3337c9f867b8809af3e7b39"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010304905"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-28971-7_23", 
      "https://app.dimensions.ai/details/publication/pub.1010304905"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000284.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-28971-7_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28971-7_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28971-7_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28971-7_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28971-7_23'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      23 PREDICATES      54 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-28971-7_23 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9ceddaf717b94441bb415373f2a9e5b7
4 schema:citation sg:pub.10.1007/978-3-642-35975-0_1
5 sg:pub.10.1007/s00500-011-0698-z
6 sg:pub.10.1007/s00779-011-0450-9
7 sg:pub.10.1007/s10732-010-9140-4
8 https://doi.org/10.1016/j.eswa.2010.12.118
9 https://doi.org/10.1016/j.imavis.2007.08.013
10 https://doi.org/10.1016/j.inffus.2007.01.004
11 https://doi.org/10.1016/j.inffus.2013.03.004
12 https://doi.org/10.1016/j.inffus.2014.01.011
13 https://doi.org/10.1016/j.inffus.2015.01.002
14 https://doi.org/10.1016/j.websem.2004.06.003
15 https://doi.org/10.1016/j.websem.2005.05.001
16 https://doi.org/10.1049/ip-vis:20041147
17 https://doi.org/10.1080/00207721.2013.795632
18 https://doi.org/10.1080/08839510903235354
19 https://doi.org/10.1109/5.959335
20 https://doi.org/10.1109/cdc.2007.4434303
21 https://doi.org/10.1109/icif.2010.5711859
22 https://doi.org/10.1109/icpr.2000.902888
23 https://doi.org/10.1109/isda.2011.6121844
24 https://doi.org/10.1109/tac.1986.1104143
25 https://doi.org/10.1111/j.1468-0394.2011.00600.x
26 https://doi.org/10.1117/12.604120
27 https://doi.org/10.1145/1177352.1177355
28 https://doi.org/10.1207/s15327051hci2004_2
29 https://doi.org/10.3390/s120912126
30 https://doi.org/10.5565/rev/elcvia.240
31 schema:datePublished 2016
32 schema:datePublishedReg 2016-01-01
33 schema:description The availability of visual sensors and the increment of their processing capabilities have led to the development of a new generation of multi-camera systems. This increment has also conveyed new expectations and requirements that cannot be fulfilled by applying traditional fusion techniques. The ultimate objective of computer vision systems is to obtain a description of the observed scenario in terms that are both computable and human-readable, which can be seen as a specific form of situation assessment. Particularly, there is a great interest in human activity recognition in several areas such as surveillance and ambient intelligence. Simple activities can be recognized by applying pattern recognition algorithms on sensor data. However, identification of complex activities requires the development of cognitive capabilities close to human understanding. Several recent proposals combine numerical techniques and a symbolic model that represents context-dependent, background and common-sense knowledge relevant to the task. In this chapter the current challenges in the development of vision-based activity recognition systems are described, and how they can be tackled by exploiting formally represented context knowledge. Along with a review of the related literature, we describe an approach with examples in the areas of ambient intelligence and indoor security. The chapter surveys methods for context management in the literature that use symbolic knowledge models to represent and reason with context. Due to their relevance, we will pay special attention to ontology and logic-based models.
34 schema:editor Na52776c06fd54696bb707490e02c7714
35 schema:genre chapter
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N8a4dbac2d3344901bb70961e9b2a6d3b
39 schema:name Context-Based Situation Recognition in Computer Vision Systems
40 schema:pagination 627-651
41 schema:productId N9e5bcdf091894efab90a438a1dd6d4bb
42 Ne58963e04a294aae922181ab1ca93fd9
43 Nf9617a9f67a644f391259df7cfb87682
44 schema:publisher Nfba245870d504a80ae10f498b1ce6166
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010304905
46 https://doi.org/10.1007/978-3-319-28971-7_23
47 schema:sdDatePublished 2019-04-15T16:21
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N8db3d893cd104acca65b5781981dafaf
50 schema:url http://link.springer.com/10.1007/978-3-319-28971-7_23
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N21602c4c83244b8782430535680daaea rdf:first sg:person.015704626355.98
55 rdf:rest N28558acd3a184c73a60060cb8a6c4dc4
56 N28558acd3a184c73a60060cb8a6c4dc4 rdf:first sg:person.07732541205.92
57 rdf:rest Nccdcffa1e1ab4031927f6d705a9dd511
58 N306c3680e5c345878be2e27ab1c6c365 schema:familyName García
59 schema:givenName Jesús
60 rdf:type schema:Person
61 N33538baa4a044b40a431e8cce466c002 schema:name Department of Computer Science and A.I., CITIC-UGR
62 rdf:type schema:Organization
63 N3b58369693bc4c15be5d7826da485be5 rdf:first N567afb7329e443e0807e21088170f24b
64 rdf:rest Nf43ef39492054090a10b6d1da6e3cf6a
65 N567afb7329e443e0807e21088170f24b schema:familyName Llinas
66 schema:givenName James
67 rdf:type schema:Person
68 N5e5e00bcab3148b88d93c93227453da3 schema:familyName Snidaro
69 schema:givenName Lauro
70 rdf:type schema:Person
71 N5fdc98024b9149048b523141dd789882 rdf:first N306c3680e5c345878be2e27ab1c6c365
72 rdf:rest N3b58369693bc4c15be5d7826da485be5
73 N668b9a3d03fd4f9bbc6e4706c94f4c32 schema:familyName Blasch
74 schema:givenName Erik
75 rdf:type schema:Person
76 N8a4dbac2d3344901bb70961e9b2a6d3b schema:isbn 978-3-319-28969-4
77 978-3-319-28971-7
78 schema:name Context-Enhanced Information Fusion
79 rdf:type schema:Book
80 N8db3d893cd104acca65b5781981dafaf schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N9ceddaf717b94441bb415373f2a9e5b7 rdf:first sg:person.014137014241.63
83 rdf:rest N21602c4c83244b8782430535680daaea
84 N9e5bcdf091894efab90a438a1dd6d4bb schema:name dimensions_id
85 schema:value pub.1010304905
86 rdf:type schema:PropertyValue
87 Na52776c06fd54696bb707490e02c7714 rdf:first N5e5e00bcab3148b88d93c93227453da3
88 rdf:rest N5fdc98024b9149048b523141dd789882
89 Nb2825a25ec5c48f39149b34fcca945a0 rdf:first sg:person.010563353054.10
90 rdf:rest rdf:nil
91 Nccdcffa1e1ab4031927f6d705a9dd511 rdf:first sg:person.015337506407.16
92 rdf:rest Nb2825a25ec5c48f39149b34fcca945a0
93 Ne58963e04a294aae922181ab1ca93fd9 schema:name readcube_id
94 schema:value 31180314fbc31845575386448819bffd1f6326f3f3337c9f867b8809af3e7b39
95 rdf:type schema:PropertyValue
96 Nf43ef39492054090a10b6d1da6e3cf6a rdf:first N668b9a3d03fd4f9bbc6e4706c94f4c32
97 rdf:rest rdf:nil
98 Nf9617a9f67a644f391259df7cfb87682 schema:name doi
99 schema:value 10.1007/978-3-319-28971-7_23
100 rdf:type schema:PropertyValue
101 Nfba245870d504a80ae10f498b1ce6166 schema:location Cham
102 schema:name Springer International Publishing
103 rdf:type schema:Organisation
104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information and Computing Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
108 schema:name Artificial Intelligence and Image Processing
109 rdf:type schema:DefinedTerm
110 sg:person.010563353054.10 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
111 schema:familyName Molina
112 schema:givenName José M.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010563353054.10
114 rdf:type schema:Person
115 sg:person.014137014241.63 schema:affiliation N33538baa4a044b40a431e8cce466c002
116 schema:familyName Gómez-Romero
117 schema:givenName Juan
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014137014241.63
119 rdf:type schema:Person
120 sg:person.015337506407.16 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
121 schema:familyName Serrano
122 schema:givenName Miguel A.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015337506407.16
124 rdf:type schema:Person
125 sg:person.015704626355.98 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
126 schema:familyName García
127 schema:givenName Jesús
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015704626355.98
129 rdf:type schema:Person
130 sg:person.07732541205.92 schema:affiliation https://www.grid.ac/institutes/grid.7840.b
131 schema:familyName Patricio
132 schema:givenName Miguel A.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07732541205.92
134 rdf:type schema:Person
135 sg:pub.10.1007/978-3-642-35975-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020168937
136 https://doi.org/10.1007/978-3-642-35975-0_1
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00500-011-0698-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007919762
139 https://doi.org/10.1007/s00500-011-0698-z
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00779-011-0450-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025863411
142 https://doi.org/10.1007/s00779-011-0450-9
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s10732-010-9140-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038967371
145 https://doi.org/10.1007/s10732-010-9140-4
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.eswa.2010.12.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027249055
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.imavis.2007.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000977783
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.inffus.2007.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048316910
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.inffus.2013.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035587812
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.inffus.2014.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003849945
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.inffus.2015.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015035406
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.websem.2004.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023875725
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.websem.2005.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006751228
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1049/ip-vis:20041147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056860964
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1080/00207721.2013.795632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039351912
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1080/08839510903235354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050046266
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/5.959335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061180384
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/cdc.2007.4434303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095204442
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/icif.2010.5711859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093550268
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/icpr.2000.902888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094113288
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/isda.2011.6121844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095477857
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tac.1986.1104143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061474404
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1111/j.1468-0394.2011.00600.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022301681
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1117/12.604120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019111887
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1145/1177352.1177355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003634065
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1207/s15327051hci2004_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031721535
188 rdf:type schema:CreativeWork
189 https://doi.org/10.3390/s120912126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052227343
190 rdf:type schema:CreativeWork
191 https://doi.org/10.5565/rev/elcvia.240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100937717
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.7840.b schema:alternateName Carlos III University of Madrid
194 schema:name Applied Artificial Intelligence Group, Universidad Carlos III de Madrid
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...