Minimal Solutions for Pose Estimation of a Multi-Camera System View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-04-23

AUTHORS

Gim Hee Lee , Bo Li , Marc Pollefeys , Friedrich Fraundorfer

ABSTRACT

In this paper, we propose a novel formulation to solve the pose estimation problem of a calibrated multi-camera system. The non-central rays that pass through the 3D world points and multi-camera system are elegantly represented as Plücker lines. This allows us to solve for the depth of the points along the Plücker lines with a minimal set of 3-point correspondences. We show that the minimal solution for the depth of the points along the Plücker lines is an 8 degree polynomial that gives up to 8 real solutions. The coordinates of the 3D world points in the multi-camera frame are computed from the known depths. Consequently, the pose of the multi-camera system, i.e. the rigid transformation between the world and multi-camera frames can be obtained from absolute orientation. We also derive a closed-form minimal solution for the absolute orientation. This removes the need for the computationally expensive Singular Value Decompositions (SVD) during the evaluations of the possible solutions for the depths. We identify the correct solution and do robust estimation with RANSAC. Finally, the solution is further refined by including all the inlier correspondences in a non-linear refinement step. We verify our approach by showing comparisons with other existing approaches and results from large-scale real-world datasets. More... »

PAGES

521-538

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-28872-7_30

DOI

http://dx.doi.org/10.1007/978-3-319-28872-7_30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023733355


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, ETH Z\u00fcrich, Universit\u00e4tstrasse 6, 8092, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Computer Science, ETH Z\u00fcrich, Universit\u00e4tstrasse 6, 8092, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hee Lee", 
        "givenName": "Gim", 
        "id": "sg:person.011367252754.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011367252754.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, ETH Z\u00fcrich, Universit\u00e4tstrasse 6, 8092, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Computer Science, ETH Z\u00fcrich, Universit\u00e4tstrasse 6, 8092, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Bo", 
        "id": "sg:person.010164741335.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010164741335.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, ETH Z\u00fcrich, Universit\u00e4tstrasse 6, 8092, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Department of Computer Science, ETH Z\u00fcrich, Universit\u00e4tstrasse 6, 8092, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pollefeys", 
        "givenName": "Marc", 
        "id": "sg:person.013372156770.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013372156770.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Civil Engineering and Surveying, Technische Universit\u00e4t M\u00fcnchen, Arcisstrasse 21, 80333, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Faculty of Civil Engineering and Surveying, Technische Universit\u00e4t M\u00fcnchen, Arcisstrasse 21, 80333, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fraundorfer", 
        "givenName": "Friedrich", 
        "id": "sg:person.016452351373.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016452351373.65"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-04-23", 
    "datePublishedReg": "2016-04-23", 
    "description": "In this paper, we propose a novel formulation to solve the pose estimation problem of a calibrated multi-camera system. The non-central rays that pass through the 3D world points and multi-camera system are elegantly represented as Pl\u00fccker lines. This allows us to solve for the depth of the points along the Pl\u00fccker lines with a minimal set of 3-point correspondences. We show that the minimal solution for the depth of the points along the Pl\u00fccker lines is an 8 degree polynomial that gives up\u00a0to 8 real solutions. The coordinates of the 3D world points in the multi-camera frame are computed from the known depths. Consequently, the pose of the multi-camera system, i.e. the rigid transformation between the world and multi-camera frames can be obtained from absolute orientation. We also derive a closed-form minimal solution for the absolute orientation. This removes the need for the computationally expensive Singular Value Decompositions (SVD) during the evaluations of the possible solutions for the depths. We identify the correct solution and do robust estimation with RANSAC. Finally, the solution is further refined by including all the inlier correspondences in a non-linear refinement step. We verify our approach by showing comparisons with other existing approaches and results from large-scale real-world datasets.", 
    "editor": [
      {
        "familyName": "Inaba", 
        "givenName": "Masayuki", 
        "type": "Person"
      }, 
      {
        "familyName": "Corke", 
        "givenName": "Peter", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-28872-7_30", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-28870-3", 
        "978-3-319-28872-7"
      ], 
      "name": "Robotics Research", 
      "type": "Book"
    }, 
    "keywords": [
      "minimal solutions", 
      "singular value decomposition", 
      "multi-camera system", 
      "Pl\u00fccker lines", 
      "pose estimation problem", 
      "estimation problem", 
      "robust estimation", 
      "inlier correspondences", 
      "calibrated multi-camera system", 
      "real solutions", 
      "value decomposition", 
      "large-scale real-world datasets", 
      "real-world datasets", 
      "world points", 
      "degree polynomial", 
      "minimal set", 
      "expensive singular value decomposition", 
      "correct solution", 
      "pose estimation", 
      "solution", 
      "absolute orientation", 
      "refinement step", 
      "novel formulation", 
      "rigid transformation", 
      "estimation", 
      "correspondence", 
      "polynomials", 
      "possible solutions", 
      "system", 
      "point", 
      "formulation", 
      "problem", 
      "coordinates", 
      "pose", 
      "RANSAC", 
      "approach", 
      "set", 
      "frame", 
      "decomposition", 
      "datasets", 
      "transformation", 
      "step", 
      "results", 
      "world", 
      "need", 
      "evaluation", 
      "comparison", 
      "lines", 
      "orientation", 
      "depth", 
      "rays", 
      "paper", 
      "non-central rays", 
      "multi-camera frame", 
      "closed-form minimal solution", 
      "non-linear refinement step"
    ], 
    "name": "Minimal Solutions for Pose Estimation of a Multi-Camera System", 
    "pagination": "521-538", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023733355"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-28872-7_30"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-28872-7_30", 
      "https://app.dimensions.ai/details/publication/pub.1023733355"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_35.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-28872-7_30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28872-7_30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28872-7_30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28872-7_30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28872-7_30'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      23 PREDICATES      81 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-28872-7_30 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nbcce019e1df94988b02fe6eb6875e11e
4 schema:datePublished 2016-04-23
5 schema:datePublishedReg 2016-04-23
6 schema:description In this paper, we propose a novel formulation to solve the pose estimation problem of a calibrated multi-camera system. The non-central rays that pass through the 3D world points and multi-camera system are elegantly represented as Plücker lines. This allows us to solve for the depth of the points along the Plücker lines with a minimal set of 3-point correspondences. We show that the minimal solution for the depth of the points along the Plücker lines is an 8 degree polynomial that gives up to 8 real solutions. The coordinates of the 3D world points in the multi-camera frame are computed from the known depths. Consequently, the pose of the multi-camera system, i.e. the rigid transformation between the world and multi-camera frames can be obtained from absolute orientation. We also derive a closed-form minimal solution for the absolute orientation. This removes the need for the computationally expensive Singular Value Decompositions (SVD) during the evaluations of the possible solutions for the depths. We identify the correct solution and do robust estimation with RANSAC. Finally, the solution is further refined by including all the inlier correspondences in a non-linear refinement step. We verify our approach by showing comparisons with other existing approaches and results from large-scale real-world datasets.
7 schema:editor Ncbd74ad21c27402ca492e62213b7cd64
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne04dc787563348a892173ca32480ff8f
12 schema:keywords Plücker lines
13 RANSAC
14 absolute orientation
15 approach
16 calibrated multi-camera system
17 closed-form minimal solution
18 comparison
19 coordinates
20 correct solution
21 correspondence
22 datasets
23 decomposition
24 degree polynomial
25 depth
26 estimation
27 estimation problem
28 evaluation
29 expensive singular value decomposition
30 formulation
31 frame
32 inlier correspondences
33 large-scale real-world datasets
34 lines
35 minimal set
36 minimal solutions
37 multi-camera frame
38 multi-camera system
39 need
40 non-central rays
41 non-linear refinement step
42 novel formulation
43 orientation
44 paper
45 point
46 polynomials
47 pose
48 pose estimation
49 pose estimation problem
50 possible solutions
51 problem
52 rays
53 real solutions
54 real-world datasets
55 refinement step
56 results
57 rigid transformation
58 robust estimation
59 set
60 singular value decomposition
61 solution
62 step
63 system
64 transformation
65 value decomposition
66 world
67 world points
68 schema:name Minimal Solutions for Pose Estimation of a Multi-Camera System
69 schema:pagination 521-538
70 schema:productId N55ad8e4fb14d42be9ab1da261dbc3eae
71 N985925fc2c374688b831bf6d784ee128
72 schema:publisher Nc785fd5cfbb54cc290f5105fc68f726f
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023733355
74 https://doi.org/10.1007/978-3-319-28872-7_30
75 schema:sdDatePublished 2021-11-01T18:57
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N3b40760215ad4b679a7c3548037d3d15
78 schema:url https://doi.org/10.1007/978-3-319-28872-7_30
79 sgo:license sg:explorer/license/
80 sgo:sdDataset chapters
81 rdf:type schema:Chapter
82 N36efbc2eb8b14debb37088c9146d8e8e rdf:first sg:person.013372156770.67
83 rdf:rest N41920d862fe94382b0fdc30072d5b53b
84 N3b40760215ad4b679a7c3548037d3d15 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N3c5659d0f5194665b57862c138a62a85 schema:familyName Inaba
87 schema:givenName Masayuki
88 rdf:type schema:Person
89 N41920d862fe94382b0fdc30072d5b53b rdf:first sg:person.016452351373.65
90 rdf:rest rdf:nil
91 N4280caba575d40089269589efeb379c4 schema:familyName Corke
92 schema:givenName Peter
93 rdf:type schema:Person
94 N4a6acb7af7d64de6b4f2b5df55742b19 rdf:first sg:person.010164741335.48
95 rdf:rest N36efbc2eb8b14debb37088c9146d8e8e
96 N54ae5abaff10493c92aa86087ea04e5b rdf:first N4280caba575d40089269589efeb379c4
97 rdf:rest rdf:nil
98 N55ad8e4fb14d42be9ab1da261dbc3eae schema:name dimensions_id
99 schema:value pub.1023733355
100 rdf:type schema:PropertyValue
101 N985925fc2c374688b831bf6d784ee128 schema:name doi
102 schema:value 10.1007/978-3-319-28872-7_30
103 rdf:type schema:PropertyValue
104 Nbcce019e1df94988b02fe6eb6875e11e rdf:first sg:person.011367252754.20
105 rdf:rest N4a6acb7af7d64de6b4f2b5df55742b19
106 Nc785fd5cfbb54cc290f5105fc68f726f schema:name Springer Nature
107 rdf:type schema:Organisation
108 Ncbd74ad21c27402ca492e62213b7cd64 rdf:first N3c5659d0f5194665b57862c138a62a85
109 rdf:rest N54ae5abaff10493c92aa86087ea04e5b
110 Ne04dc787563348a892173ca32480ff8f schema:isbn 978-3-319-28870-3
111 978-3-319-28872-7
112 schema:name Robotics Research
113 rdf:type schema:Book
114 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information and Computing Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
118 schema:name Artificial Intelligence and Image Processing
119 rdf:type schema:DefinedTerm
120 sg:person.010164741335.48 schema:affiliation grid-institutes:grid.5801.c
121 schema:familyName Li
122 schema:givenName Bo
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010164741335.48
124 rdf:type schema:Person
125 sg:person.011367252754.20 schema:affiliation grid-institutes:grid.5801.c
126 schema:familyName Hee Lee
127 schema:givenName Gim
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011367252754.20
129 rdf:type schema:Person
130 sg:person.013372156770.67 schema:affiliation grid-institutes:grid.5801.c
131 schema:familyName Pollefeys
132 schema:givenName Marc
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013372156770.67
134 rdf:type schema:Person
135 sg:person.016452351373.65 schema:affiliation grid-institutes:grid.6936.a
136 schema:familyName Fraundorfer
137 schema:givenName Friedrich
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016452351373.65
139 rdf:type schema:Person
140 grid-institutes:grid.5801.c schema:alternateName Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092, Zurich, Switzerland
141 schema:name Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092, Zurich, Switzerland
142 rdf:type schema:Organization
143 grid-institutes:grid.6936.a schema:alternateName Faculty of Civil Engineering and Surveying, Technische Universität München, Arcisstrasse 21, 80333, Munich, Germany
144 schema:name Faculty of Civil Engineering and Surveying, Technische Universität München, Arcisstrasse 21, 80333, Munich, Germany
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...