Multivalued Functions Integration: from Additive to Arbitrary Non-negative Set Function View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-01-12

AUTHORS

Endre Pap

ABSTRACT

It is given a short overview of some integrals of multifunctions based on additive measures, as strong, Aumann and Aumann-Gould integrals. It is considered also a multi-valued Choquet integral based on a multisubmeasure. Then it is introduced a set-valued Gould type integral of multifunctions with values in the family of all nonempty bounded subsets of a real Banach space X and with respect to an arbitrary non-negative set function. There are given some basic properties of the integrable multifunctions, and some continuity properties of the multimeasure induced by set-valued integral. More... »

PAGES

257-274

Book

TITLE

On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory

ISBN

978-3-319-28807-9
978-3-319-28808-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-28808-6_15

DOI

http://dx.doi.org/10.1007/978-3-319-28808-6_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032182106


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00d3buda University, Becsi \u00fat 92, 1034, Budapest, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.440535.3", 
          "name": [
            "Singidunum University, Danijelova 32, 11000, Belgrade, Serbia", 
            "\u00d3buda University, Becsi \u00fat 92, 1034, Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pap", 
        "givenName": "Endre", 
        "id": "sg:person.012354470173.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-01-12", 
    "datePublishedReg": "2016-01-12", 
    "description": "It is given a short overview of some integrals of multifunctions based on additive measures, as strong, Aumann and Aumann-Gould integrals. It is considered also a multi-valued Choquet integral based on a multisubmeasure. Then it is introduced a set-valued Gould type integral of multifunctions with values in the family of all nonempty bounded subsets of a real Banach space X and with respect to an arbitrary non-negative set function. There are given some basic properties of the integrable multifunctions, and some continuity properties of the multimeasure induced by set-valued integral.", 
    "editor": [
      {
        "familyName": "Saminger-Platz", 
        "givenName": "Susanne", 
        "type": "Person"
      }, 
      {
        "familyName": "Mesiar", 
        "givenName": "Radko", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-28808-6_15", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-28807-9", 
        "978-3-319-28808-6"
      ], 
      "name": "On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "integrals", 
      "multifunction", 
      "additive measures", 
      "Choquet integral", 
      "type integrals", 
      "nonempty", 
      "real Banach space X", 
      "Banach space X", 
      "space X", 
      "set function", 
      "basic properties", 
      "integrable multifunctions", 
      "continuity properties", 
      "multimeasure", 
      "set-valued integral", 
      "short overview", 
      "overview", 
      "measures", 
      "Aumann", 
      "values", 
      "family", 
      "subset", 
      "respect", 
      "function", 
      "properties", 
      "integrals of multifunctions", 
      "Aumann-Gould integrals", 
      "multisubmeasure", 
      "set-valued Gould type integral", 
      "Gould type integral", 
      "arbitrary non-negative set function", 
      "non-negative set function"
    ], 
    "name": "Multivalued Functions Integration: from Additive to Arbitrary Non-negative Set Function", 
    "pagination": "257-274", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032182106"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-28808-6_15"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-28808-6_15", 
      "https://app.dimensions.ai/details/publication/pub.1032182106"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_405.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-28808-6_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28808-6_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28808-6_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28808-6_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28808-6_15'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      23 PREDICATES      57 URIs      50 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-28808-6_15 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N1170b09cc3ed463d8075ca8b5ae0ffc2
4 schema:datePublished 2016-01-12
5 schema:datePublishedReg 2016-01-12
6 schema:description It is given a short overview of some integrals of multifunctions based on additive measures, as strong, Aumann and Aumann-Gould integrals. It is considered also a multi-valued Choquet integral based on a multisubmeasure. Then it is introduced a set-valued Gould type integral of multifunctions with values in the family of all nonempty bounded subsets of a real Banach space X and with respect to an arbitrary non-negative set function. There are given some basic properties of the integrable multifunctions, and some continuity properties of the multimeasure induced by set-valued integral.
7 schema:editor Ne0830f7c601542b1a2fd8f93694f7767
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N32812295d49a458c8b7e4a2b322ee633
12 schema:keywords Aumann
13 Aumann-Gould integrals
14 Banach space X
15 Choquet integral
16 Gould type integral
17 additive measures
18 arbitrary non-negative set function
19 basic properties
20 continuity properties
21 family
22 function
23 integrable multifunctions
24 integrals
25 integrals of multifunctions
26 measures
27 multifunction
28 multimeasure
29 multisubmeasure
30 non-negative set function
31 nonempty
32 overview
33 properties
34 real Banach space X
35 respect
36 set function
37 set-valued Gould type integral
38 set-valued integral
39 short overview
40 space X
41 subset
42 type integrals
43 values
44 schema:name Multivalued Functions Integration: from Additive to Arbitrary Non-negative Set Function
45 schema:pagination 257-274
46 schema:productId N356753d301864c27bf0b41839c11d400
47 Ncec09e2587f643f9b186f0f257ce2408
48 schema:publisher N850ab42b8cad4be793f894d7cd2d5af6
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032182106
50 https://doi.org/10.1007/978-3-319-28808-6_15
51 schema:sdDatePublished 2021-12-01T20:08
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nfda65b728aca4eed9613af515b77637b
54 schema:url https://doi.org/10.1007/978-3-319-28808-6_15
55 sgo:license sg:explorer/license/
56 sgo:sdDataset chapters
57 rdf:type schema:Chapter
58 N0b8a9e23ee174782b8ea7da59062778b rdf:first N6e992a896368450bbc11befb9434f242
59 rdf:rest rdf:nil
60 N1170b09cc3ed463d8075ca8b5ae0ffc2 rdf:first sg:person.012354470173.10
61 rdf:rest rdf:nil
62 N32812295d49a458c8b7e4a2b322ee633 schema:isbn 978-3-319-28807-9
63 978-3-319-28808-6
64 schema:name On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory
65 rdf:type schema:Book
66 N356753d301864c27bf0b41839c11d400 schema:name dimensions_id
67 schema:value pub.1032182106
68 rdf:type schema:PropertyValue
69 N6e992a896368450bbc11befb9434f242 schema:familyName Mesiar
70 schema:givenName Radko
71 rdf:type schema:Person
72 N850ab42b8cad4be793f894d7cd2d5af6 schema:name Springer Nature
73 rdf:type schema:Organisation
74 N95879a3591a642dca309f55f579f8487 schema:familyName Saminger-Platz
75 schema:givenName Susanne
76 rdf:type schema:Person
77 Ncec09e2587f643f9b186f0f257ce2408 schema:name doi
78 schema:value 10.1007/978-3-319-28808-6_15
79 rdf:type schema:PropertyValue
80 Ne0830f7c601542b1a2fd8f93694f7767 rdf:first N95879a3591a642dca309f55f579f8487
81 rdf:rest N0b8a9e23ee174782b8ea7da59062778b
82 Nfda65b728aca4eed9613af515b77637b schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
85 schema:name Psychology and Cognitive Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
88 schema:name Psychology
89 rdf:type schema:DefinedTerm
90 sg:person.012354470173.10 schema:affiliation grid-institutes:grid.440535.3
91 schema:familyName Pap
92 schema:givenName Endre
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10
94 rdf:type schema:Person
95 grid-institutes:grid.440535.3 schema:alternateName Óbuda University, Becsi út 92, 1034, Budapest, Hungary
96 schema:name Singidunum University, Danijelova 32, 11000, Belgrade, Serbia
97 Óbuda University, Becsi út 92, 1034, Budapest, Hungary
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...