Multivalued Functions Integration: from Additive to Arbitrary Non-negative Set Function View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Endre Pap

ABSTRACT

It is given a short overview of some integrals of multifunctions based on additive measures, as strong, Aumann and Aumann-Gould integrals. It is considered also a multi-valued Choquet integral based on a multisubmeasure. Then it is introduced a set-valued Gould type integral of multifunctions with values in the family of all nonempty bounded subsets of a real Banach space X and with respect to an arbitrary non-negative set function. There are given some basic properties of the integrable multifunctions, and some continuity properties of the multimeasure induced by set-valued integral. More... »

PAGES

257-274

References to SciGraph publications

Book

TITLE

On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory

ISBN

978-3-319-28807-9
978-3-319-28808-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-28808-6_15

DOI

http://dx.doi.org/10.1007/978-3-319-28808-6_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032182106


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00d3buda University", 
          "id": "https://www.grid.ac/institutes/grid.440535.3", 
          "name": [
            "Singidunum University", 
            "\u00d3buda University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pap", 
        "givenName": "Endre", 
        "id": "sg:person.012354470173.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9947-1972-0293054-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002371220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/s12175-010-0013-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002900859", 
          "https://doi.org/10.2478/s12175-010-0013-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/s12175-010-0013-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002900859", 
          "https://doi.org/10.2478/s12175-010-0013-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.topol.2012.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004658956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2011.01.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010291803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(94)00342-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019592662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11117-014-0283-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020202618", 
          "https://doi.org/10.1007/s11117-014-0283-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2006.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021342516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0088218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024234323", 
          "https://doi.org/10.1007/bfb0088218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11228-004-0934-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024425883", 
          "https://doi.org/10.1007/s11228-004-0934-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11228-004-0934-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024425883", 
          "https://doi.org/10.1007/s11228-004-0934-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2004.03.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028234465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(87)90149-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032180690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(65)90049-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035033125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-15.1.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035111899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2015.05.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037074563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2004.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040765572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(93)90149-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040937114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(93)90149-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040937114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00122574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041153045", 
          "https://doi.org/10.1007/bf00122574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00122574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041153045", 
          "https://doi.org/10.1007/bf00122574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2013.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041412708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2014.07.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045085044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(98)00184-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045148215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-044450263-6/50015-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046247772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2008.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046922491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2012.12.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048644855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(99)00020-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052472713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cmb-1996-047-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072272091"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "It is given a short overview of some integrals of multifunctions based on additive measures, as strong, Aumann and Aumann-Gould integrals. It is considered also a multi-valued Choquet integral based on a multisubmeasure. Then it is introduced a set-valued Gould type integral of multifunctions with values in the family of all nonempty bounded subsets of a real Banach space X and with respect to an arbitrary non-negative set function. There are given some basic properties of the integrable multifunctions, and some continuity properties of the multimeasure induced by set-valued integral.", 
    "editor": [
      {
        "familyName": "Saminger-Platz", 
        "givenName": "Susanne", 
        "type": "Person"
      }, 
      {
        "familyName": "Mesiar", 
        "givenName": "Radko", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-28808-6_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-28807-9", 
        "978-3-319-28808-6"
      ], 
      "name": "On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory", 
      "type": "Book"
    }, 
    "name": "Multivalued Functions Integration: from Additive to Arbitrary Non-negative Set Function", 
    "pagination": "257-274", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-28808-6_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "994ec4947034f2b8c4e6b89d38613126db388c66dcb31dd736641cc3d6d3dcbb"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032182106"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-28808-6_15", 
      "https://app.dimensions.ai/details/publication/pub.1032182106"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T15:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000263.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-28808-6_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28808-6_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28808-6_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28808-6_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-28808-6_15'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      23 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-28808-6_15 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N9b7d83acebe64039b6711eae2298615f
4 schema:citation sg:pub.10.1007/bf00122574
5 sg:pub.10.1007/bfb0088218
6 sg:pub.10.1007/s11117-014-0283-7
7 sg:pub.10.1007/s11228-004-0934-0
8 sg:pub.10.2478/s12175-010-0013-y
9 https://doi.org/10.1016/0022-247x(65)90049-1
10 https://doi.org/10.1016/0022-247x(87)90149-1
11 https://doi.org/10.1016/0165-0114(93)90149-c
12 https://doi.org/10.1016/0165-0114(94)00342-5
13 https://doi.org/10.1016/b978-044450263-6/50015-4
14 https://doi.org/10.1016/j.fss.2004.04.005
15 https://doi.org/10.1016/j.fss.2008.10.006
16 https://doi.org/10.1016/j.fss.2013.10.004
17 https://doi.org/10.1016/j.fss.2015.05.017
18 https://doi.org/10.1016/j.ins.2011.01.038
19 https://doi.org/10.1016/j.jmaa.2004.03.026
20 https://doi.org/10.1016/j.jmaa.2006.10.003
21 https://doi.org/10.1016/j.jmaa.2012.12.044
22 https://doi.org/10.1016/j.jmaa.2014.07.050
23 https://doi.org/10.1016/j.topol.2012.05.003
24 https://doi.org/10.1016/s0031-3203(99)00020-5
25 https://doi.org/10.1016/s0165-0114(98)00184-5
26 https://doi.org/10.1090/s0002-9947-1972-0293054-4
27 https://doi.org/10.1112/plms/s3-15.1.193
28 https://doi.org/10.4153/cmb-1996-047-x
29 schema:datePublished 2016
30 schema:datePublishedReg 2016-01-01
31 schema:description It is given a short overview of some integrals of multifunctions based on additive measures, as strong, Aumann and Aumann-Gould integrals. It is considered also a multi-valued Choquet integral based on a multisubmeasure. Then it is introduced a set-valued Gould type integral of multifunctions with values in the family of all nonempty bounded subsets of a real Banach space X and with respect to an arbitrary non-negative set function. There are given some basic properties of the integrable multifunctions, and some continuity properties of the multimeasure induced by set-valued integral.
32 schema:editor N9a25855caff04efd890e9dac93122cfa
33 schema:genre chapter
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf Nc05350163ee74c5bb1a7441b2246eb92
37 schema:name Multivalued Functions Integration: from Additive to Arbitrary Non-negative Set Function
38 schema:pagination 257-274
39 schema:productId N224c0646ab78408181f83fb61ca1e732
40 N589ca33b06504f949663cc29acf45a57
41 N74c2327c320a4a48ae40d108203a9f0e
42 schema:publisher N3daa5533feb4404a9529ea3d079e7347
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032182106
44 https://doi.org/10.1007/978-3-319-28808-6_15
45 schema:sdDatePublished 2019-04-15T15:22
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N7da0c117ba164679a6ec8e9f7595dd5d
48 schema:url http://link.springer.com/10.1007/978-3-319-28808-6_15
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N224c0646ab78408181f83fb61ca1e732 schema:name doi
53 schema:value 10.1007/978-3-319-28808-6_15
54 rdf:type schema:PropertyValue
55 N3daa5533feb4404a9529ea3d079e7347 schema:location Cham
56 schema:name Springer International Publishing
57 rdf:type schema:Organisation
58 N586d7c402d134d51af115c707c55724a rdf:first N8a12255dedf04d44a86329daaecf2ea7
59 rdf:rest rdf:nil
60 N589ca33b06504f949663cc29acf45a57 schema:name dimensions_id
61 schema:value pub.1032182106
62 rdf:type schema:PropertyValue
63 N74c2327c320a4a48ae40d108203a9f0e schema:name readcube_id
64 schema:value 994ec4947034f2b8c4e6b89d38613126db388c66dcb31dd736641cc3d6d3dcbb
65 rdf:type schema:PropertyValue
66 N7da0c117ba164679a6ec8e9f7595dd5d schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N8a12255dedf04d44a86329daaecf2ea7 schema:familyName Mesiar
69 schema:givenName Radko
70 rdf:type schema:Person
71 N9a25855caff04efd890e9dac93122cfa rdf:first Nd86c488e08e54028a26e6d03d0b02fd2
72 rdf:rest N586d7c402d134d51af115c707c55724a
73 N9b7d83acebe64039b6711eae2298615f rdf:first sg:person.012354470173.10
74 rdf:rest rdf:nil
75 Nc05350163ee74c5bb1a7441b2246eb92 schema:isbn 978-3-319-28807-9
76 978-3-319-28808-6
77 schema:name On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory
78 rdf:type schema:Book
79 Nd86c488e08e54028a26e6d03d0b02fd2 schema:familyName Saminger-Platz
80 schema:givenName Susanne
81 rdf:type schema:Person
82 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
83 schema:name Psychology and Cognitive Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
86 schema:name Psychology
87 rdf:type schema:DefinedTerm
88 sg:person.012354470173.10 schema:affiliation https://www.grid.ac/institutes/grid.440535.3
89 schema:familyName Pap
90 schema:givenName Endre
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10
92 rdf:type schema:Person
93 sg:pub.10.1007/bf00122574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041153045
94 https://doi.org/10.1007/bf00122574
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bfb0088218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024234323
97 https://doi.org/10.1007/bfb0088218
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s11117-014-0283-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020202618
100 https://doi.org/10.1007/s11117-014-0283-7
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s11228-004-0934-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024425883
103 https://doi.org/10.1007/s11228-004-0934-0
104 rdf:type schema:CreativeWork
105 sg:pub.10.2478/s12175-010-0013-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1002900859
106 https://doi.org/10.2478/s12175-010-0013-y
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0022-247x(65)90049-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035033125
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0022-247x(87)90149-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032180690
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0165-0114(93)90149-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1040937114
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0165-0114(94)00342-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019592662
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/b978-044450263-6/50015-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046247772
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.fss.2004.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040765572
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.fss.2008.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046922491
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.fss.2013.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041412708
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.fss.2015.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037074563
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.ins.2011.01.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010291803
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jmaa.2004.03.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028234465
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.jmaa.2006.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021342516
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.jmaa.2012.12.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048644855
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jmaa.2014.07.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045085044
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.topol.2012.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004658956
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0031-3203(99)00020-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052472713
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0165-0114(98)00184-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045148215
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1090/s0002-9947-1972-0293054-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002371220
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1112/plms/s3-15.1.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035111899
145 rdf:type schema:CreativeWork
146 https://doi.org/10.4153/cmb-1996-047-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1072272091
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.440535.3 schema:alternateName Óbuda University
149 schema:name Singidunum University
150 Óbuda University
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...