Synergistic Effect of Ammonium Perchlorate on HMX: From Thermal Analysis to Combustion View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-08-20

AUTHORS

Alla N. Pivkina , Nikita V. Muravyev , Konstantin A. Monogarov , Valery G. Ostrovsky , Igor V. Fomenkov , Yury M. Milyokhin , Nickolay I. Shishov

ABSTRACT

The thermal decomposition and combustion of binary mixture of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and ammonium perchlorate (AP) are investigated at various concentrations. Thermal stability was investigated by thermal analysis techniques, i.e., DSC/TGA, combined with FTIR spectrometry, and accelerating rate calorimetry (ARC). Twofold HMX/AP interaction result is observed: ammonium perchlorate as synergistic additive effectively (in 60 °C) reduces the onset decomposition temperature of HMX, whereas gaseous products of the HMX thermolysis, in turn, catalyze the AP decomposition. Burning rate of mechanical mixtures exceeds the HMX level at 4 MPa, when HMX content lies in the range close to above synergistic effect at thermolysis, and AP particle size is fine (10 μm). Addition of large AP particles to HMX does not enhance the burning rate. Comparative analysis of the combustion parameters of the mechanical mixtures and large HMX crystals covered with AP layer revealed that the direct contact between components is not a necessary condition for the HMX/AP interaction for compositions without binder, proving the gas-phase character of this effect. However, for compositions with active binder, the direct contact between components is important. Finally, the synergistic effect changes the decomposition pathway for mixtures with HMX content above 40 % and below 90 % and noticeably increases the burning rate of HMX-based compositions with active binder. Formulations with active binder and coated HMX provide higher burning rate than those ones with mechanical mixtures of HMX with fine AP. It means the possibility to use the considerably less amount of ammonium perchlorate to achieve the same level of the burning rate. More... »

PAGES

365-381

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-27748-6_15

DOI

http://dx.doi.org/10.1007/978-3-319-27748-6_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000847305


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Semenov Institute of Chemical Physics, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.424930.8", 
          "name": [
            "Semenov Institute of Chemical Physics, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pivkina", 
        "givenName": "Alla N.", 
        "id": "sg:person.014714553131.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014714553131.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semenov Institute of Chemical Physics, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.424930.8", 
          "name": [
            "Semenov Institute of Chemical Physics, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muravyev", 
        "givenName": "Nikita V.", 
        "id": "sg:person.013527324273.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527324273.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Semenov Institute of Chemical Physics, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.424930.8", 
          "name": [
            "Semenov Institute of Chemical Physics, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monogarov", 
        "givenName": "Konstantin A.", 
        "id": "sg:person.016002731531.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016002731531.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "PLC Central Scientific Design Bureau, 129110, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "PLC Central Scientific Design Bureau, 129110, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ostrovsky", 
        "givenName": "Valery G.", 
        "id": "sg:person.016615255233.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016615255233.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zelinsky Institute of Organic Chemistry, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.439283.7", 
          "name": [
            "Zelinsky Institute of Organic Chemistry, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fomenkov", 
        "givenName": "Igor V.", 
        "id": "sg:person.011031106061.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011031106061.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soyuz Federal Center for Dual-Use Technologies, 140090, Dzerzhinskii, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Soyuz Federal Center for Dual-Use Technologies, 140090, Dzerzhinskii, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milyokhin", 
        "givenName": "Yury M.", 
        "id": "sg:person.014365473447.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365473447.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soyuz Federal Center for Dual-Use Technologies, 140090, Dzerzhinskii, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Soyuz Federal Center for Dual-Use Technologies, 140090, Dzerzhinskii, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shishov", 
        "givenName": "Nickolay I.", 
        "id": "sg:person.014430743251.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014430743251.17"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-08-20", 
    "datePublishedReg": "2016-08-20", 
    "description": "The thermal decomposition and combustion of binary mixture of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and ammonium perchlorate (AP) are investigated at various concentrations. Thermal stability was investigated by thermal analysis techniques, i.e., DSC/TGA, combined with FTIR spectrometry, and accelerating rate calorimetry (ARC). Twofold HMX/AP interaction result is observed: ammonium perchlorate as synergistic additive effectively (in 60\u00a0\u00b0C) reduces the onset decomposition temperature of HMX, whereas gaseous products of the HMX thermolysis, in turn, catalyze the AP decomposition. Burning rate of mechanical mixtures exceeds the HMX level at 4\u00a0MPa, when HMX content lies in the range close to above synergistic effect at thermolysis, and AP particle size is fine (10\u00a0\u03bcm). Addition of large AP particles to HMX does not enhance the burning rate. Comparative analysis of the combustion parameters of the mechanical mixtures and large HMX crystals covered with AP layer revealed that the direct contact between components is not a necessary condition for the HMX/AP interaction for compositions without binder, proving the gas-phase character of this effect. However, for compositions with active binder, the direct contact between components is important. Finally, the synergistic effect changes the decomposition pathway for mixtures with HMX content above 40\u00a0% and below 90\u00a0% and noticeably increases the burning rate of HMX-based compositions with active binder. Formulations with active binder and coated HMX provide higher burning rate than those ones with mechanical mixtures of HMX with fine AP. It means the possibility to use the considerably less amount of ammonium perchlorate to achieve the same level of the burning rate.", 
    "editor": [
      {
        "familyName": "De Luca", 
        "givenName": "Luigi T.", 
        "type": "Person"
      }, 
      {
        "familyName": "Shimada", 
        "givenName": "Toru", 
        "type": "Person"
      }, 
      {
        "familyName": "Sinditskii", 
        "givenName": "Valery P.", 
        "type": "Person"
      }, 
      {
        "familyName": "Calabro", 
        "givenName": "Max", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-27748-6_15", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-27746-2", 
        "978-3-319-27748-6"
      ], 
      "name": "Chemical Rocket Propulsion", 
      "type": "Book"
    }, 
    "keywords": [
      "active binder", 
      "burning rate", 
      "ammonium perchlorate", 
      "mechanical mixture", 
      "large AP particles", 
      "rate of HMX", 
      "higher burning rate", 
      "fine ammonium perchlorate", 
      "AP particle size", 
      "onset decomposition temperature", 
      "combustion parameters", 
      "thermal analysis techniques", 
      "AP particles", 
      "HMX thermolysis", 
      "Ap layer", 
      "HMX content", 
      "rate calorimetry", 
      "HMX crystals", 
      "synergistic effect", 
      "gaseous products", 
      "thermal stability", 
      "particle size", 
      "DSC/TGA", 
      "binder", 
      "thermal analysis", 
      "decomposition temperature", 
      "AP decomposition", 
      "combustion", 
      "HMX", 
      "thermal decomposition", 
      "direct contact", 
      "FTIR spectrometry", 
      "mixture", 
      "MPa", 
      "binary mixtures", 
      "analysis techniques", 
      "decomposition", 
      "layer", 
      "particles", 
      "contact", 
      "temperature", 
      "composition", 
      "TGA", 
      "stability", 
      "tetrazocine", 
      "decomposition pathways", 
      "lesser amounts", 
      "calorimetry", 
      "parameters", 
      "perchlorate", 
      "components", 
      "formulation", 
      "effect", 
      "content", 
      "rate", 
      "necessary condition", 
      "interaction results", 
      "thermolysis", 
      "technique", 
      "range", 
      "conditions", 
      "same level", 
      "size", 
      "crystals", 
      "comparative analysis", 
      "analysis", 
      "amount", 
      "octahydro", 
      "results", 
      "products", 
      "addition", 
      "concentration", 
      "one", 
      "possibility", 
      "turn", 
      "interaction", 
      "AP interaction", 
      "levels", 
      "spectrometry", 
      "character", 
      "pathway"
    ], 
    "name": "Synergistic Effect of Ammonium Perchlorate on HMX: From Thermal Analysis to Combustion", 
    "pagination": "365-381", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000847305"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-27748-6_15"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-27748-6_15", 
      "https://app.dimensions.ai/details/publication/pub.1000847305"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_349.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-27748-6_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-27748-6_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-27748-6_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-27748-6_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-27748-6_15'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      23 PREDICATES      106 URIs      99 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-27748-6_15 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nbaad026574ba4e958b4c7ea92e8cc968
4 schema:datePublished 2016-08-20
5 schema:datePublishedReg 2016-08-20
6 schema:description The thermal decomposition and combustion of binary mixture of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and ammonium perchlorate (AP) are investigated at various concentrations. Thermal stability was investigated by thermal analysis techniques, i.e., DSC/TGA, combined with FTIR spectrometry, and accelerating rate calorimetry (ARC). Twofold HMX/AP interaction result is observed: ammonium perchlorate as synergistic additive effectively (in 60 °C) reduces the onset decomposition temperature of HMX, whereas gaseous products of the HMX thermolysis, in turn, catalyze the AP decomposition. Burning rate of mechanical mixtures exceeds the HMX level at 4 MPa, when HMX content lies in the range close to above synergistic effect at thermolysis, and AP particle size is fine (10 μm). Addition of large AP particles to HMX does not enhance the burning rate. Comparative analysis of the combustion parameters of the mechanical mixtures and large HMX crystals covered with AP layer revealed that the direct contact between components is not a necessary condition for the HMX/AP interaction for compositions without binder, proving the gas-phase character of this effect. However, for compositions with active binder, the direct contact between components is important. Finally, the synergistic effect changes the decomposition pathway for mixtures with HMX content above 40 % and below 90 % and noticeably increases the burning rate of HMX-based compositions with active binder. Formulations with active binder and coated HMX provide higher burning rate than those ones with mechanical mixtures of HMX with fine AP. It means the possibility to use the considerably less amount of ammonium perchlorate to achieve the same level of the burning rate.
7 schema:editor N98b64188ac164db3a2c516ae8c6dfdf9
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N63236e9f26264edcba903814bc4b8c7c
12 schema:keywords AP decomposition
13 AP interaction
14 AP particle size
15 AP particles
16 Ap layer
17 DSC/TGA
18 FTIR spectrometry
19 HMX
20 HMX content
21 HMX crystals
22 HMX thermolysis
23 MPa
24 TGA
25 active binder
26 addition
27 ammonium perchlorate
28 amount
29 analysis
30 analysis techniques
31 binary mixtures
32 binder
33 burning rate
34 calorimetry
35 character
36 combustion
37 combustion parameters
38 comparative analysis
39 components
40 composition
41 concentration
42 conditions
43 contact
44 content
45 crystals
46 decomposition
47 decomposition pathways
48 decomposition temperature
49 direct contact
50 effect
51 fine ammonium perchlorate
52 formulation
53 gaseous products
54 higher burning rate
55 interaction
56 interaction results
57 large AP particles
58 layer
59 lesser amounts
60 levels
61 mechanical mixture
62 mixture
63 necessary condition
64 octahydro
65 one
66 onset decomposition temperature
67 parameters
68 particle size
69 particles
70 pathway
71 perchlorate
72 possibility
73 products
74 range
75 rate
76 rate calorimetry
77 rate of HMX
78 results
79 same level
80 size
81 spectrometry
82 stability
83 synergistic effect
84 technique
85 temperature
86 tetrazocine
87 thermal analysis
88 thermal analysis techniques
89 thermal decomposition
90 thermal stability
91 thermolysis
92 turn
93 schema:name Synergistic Effect of Ammonium Perchlorate on HMX: From Thermal Analysis to Combustion
94 schema:pagination 365-381
95 schema:productId Nac5944938b604616934337b617eb60f9
96 Nad6c785fa7e44852989691d2c64cf8be
97 schema:publisher Ncc3b450c49b841c784e1ebe2eff4fc54
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000847305
99 https://doi.org/10.1007/978-3-319-27748-6_15
100 schema:sdDatePublished 2022-06-01T22:32
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N1f58130fd47d4fa89fc171e5d7def945
103 schema:url https://doi.org/10.1007/978-3-319-27748-6_15
104 sgo:license sg:explorer/license/
105 sgo:sdDataset chapters
106 rdf:type schema:Chapter
107 N03f9a0fab220465caf94703a91e2c17e rdf:first sg:person.014365473447.32
108 rdf:rest Ne751a49fb7ae43aeb8a16decc428cad6
109 N1f58130fd47d4fa89fc171e5d7def945 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N24748cf997de4a4c9bc2eac0e0aeda32 rdf:first N5bd1e809fe844476a8f44597b7cfce3a
112 rdf:rest Nf0dad70e95ec4c47a34e65e4a469ca3f
113 N3f9cebb82c0c4812921ee4bb37681746 rdf:first sg:person.011031106061.37
114 rdf:rest N03f9a0fab220465caf94703a91e2c17e
115 N5bd1e809fe844476a8f44597b7cfce3a schema:familyName Shimada
116 schema:givenName Toru
117 rdf:type schema:Person
118 N63236e9f26264edcba903814bc4b8c7c schema:isbn 978-3-319-27746-2
119 978-3-319-27748-6
120 schema:name Chemical Rocket Propulsion
121 rdf:type schema:Book
122 N7abfacc7337a42c7b508a9b5a8aab282 schema:familyName Sinditskii
123 schema:givenName Valery P.
124 rdf:type schema:Person
125 N7e081801029e422db083c55e11ebc0c4 schema:familyName De Luca
126 schema:givenName Luigi T.
127 rdf:type schema:Person
128 N98b64188ac164db3a2c516ae8c6dfdf9 rdf:first N7e081801029e422db083c55e11ebc0c4
129 rdf:rest N24748cf997de4a4c9bc2eac0e0aeda32
130 N99186706d32d421185b17ead3f4728ad schema:familyName Calabro
131 schema:givenName Max
132 rdf:type schema:Person
133 Na9219faf2e644205a2b18cfe13b89157 rdf:first sg:person.016002731531.69
134 rdf:rest Nbab3085679f044b0b5c8d3aec43abb1c
135 Nac5944938b604616934337b617eb60f9 schema:name dimensions_id
136 schema:value pub.1000847305
137 rdf:type schema:PropertyValue
138 Nad6c785fa7e44852989691d2c64cf8be schema:name doi
139 schema:value 10.1007/978-3-319-27748-6_15
140 rdf:type schema:PropertyValue
141 Nbaad026574ba4e958b4c7ea92e8cc968 rdf:first sg:person.014714553131.39
142 rdf:rest Nce424b398efa474e890bf09bc592d4eb
143 Nbab3085679f044b0b5c8d3aec43abb1c rdf:first sg:person.016615255233.22
144 rdf:rest N3f9cebb82c0c4812921ee4bb37681746
145 Ncc3b450c49b841c784e1ebe2eff4fc54 schema:name Springer Nature
146 rdf:type schema:Organisation
147 Nce424b398efa474e890bf09bc592d4eb rdf:first sg:person.013527324273.31
148 rdf:rest Na9219faf2e644205a2b18cfe13b89157
149 Ndffa2d82723e4c9da2cf3906f56c3a0d rdf:first N99186706d32d421185b17ead3f4728ad
150 rdf:rest rdf:nil
151 Ne751a49fb7ae43aeb8a16decc428cad6 rdf:first sg:person.014430743251.17
152 rdf:rest rdf:nil
153 Nf0dad70e95ec4c47a34e65e4a469ca3f rdf:first N7abfacc7337a42c7b508a9b5a8aab282
154 rdf:rest Ndffa2d82723e4c9da2cf3906f56c3a0d
155 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
156 schema:name Engineering
157 rdf:type schema:DefinedTerm
158 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
159 schema:name Interdisciplinary Engineering
160 rdf:type schema:DefinedTerm
161 sg:person.011031106061.37 schema:affiliation grid-institutes:grid.439283.7
162 schema:familyName Fomenkov
163 schema:givenName Igor V.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011031106061.37
165 rdf:type schema:Person
166 sg:person.013527324273.31 schema:affiliation grid-institutes:grid.424930.8
167 schema:familyName Muravyev
168 schema:givenName Nikita V.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527324273.31
170 rdf:type schema:Person
171 sg:person.014365473447.32 schema:affiliation grid-institutes:None
172 schema:familyName Milyokhin
173 schema:givenName Yury M.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365473447.32
175 rdf:type schema:Person
176 sg:person.014430743251.17 schema:affiliation grid-institutes:None
177 schema:familyName Shishov
178 schema:givenName Nickolay I.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014430743251.17
180 rdf:type schema:Person
181 sg:person.014714553131.39 schema:affiliation grid-institutes:grid.424930.8
182 schema:familyName Pivkina
183 schema:givenName Alla N.
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014714553131.39
185 rdf:type schema:Person
186 sg:person.016002731531.69 schema:affiliation grid-institutes:grid.424930.8
187 schema:familyName Monogarov
188 schema:givenName Konstantin A.
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016002731531.69
190 rdf:type schema:Person
191 sg:person.016615255233.22 schema:affiliation grid-institutes:None
192 schema:familyName Ostrovsky
193 schema:givenName Valery G.
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016615255233.22
195 rdf:type schema:Person
196 grid-institutes:None schema:alternateName PLC Central Scientific Design Bureau, 129110, Moscow, Russia
197 Soyuz Federal Center for Dual-Use Technologies, 140090, Dzerzhinskii, Russia
198 schema:name PLC Central Scientific Design Bureau, 129110, Moscow, Russia
199 Soyuz Federal Center for Dual-Use Technologies, 140090, Dzerzhinskii, Russia
200 rdf:type schema:Organization
201 grid-institutes:grid.424930.8 schema:alternateName Semenov Institute of Chemical Physics, 119991, Moscow, Russia
202 schema:name Semenov Institute of Chemical Physics, 119991, Moscow, Russia
203 rdf:type schema:Organization
204 grid-institutes:grid.439283.7 schema:alternateName Zelinsky Institute of Organic Chemistry, 119991, Moscow, Russia
205 schema:name Zelinsky Institute of Organic Chemistry, 119991, Moscow, Russia
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...