Ontology type: schema:Chapter
2016-08-20
AUTHORSAlla N. Pivkina , Nikita V. Muravyev , Konstantin A. Monogarov , Valery G. Ostrovsky , Igor V. Fomenkov , Yury M. Milyokhin , Nickolay I. Shishov
ABSTRACTThe thermal decomposition and combustion of binary mixture of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and ammonium perchlorate (AP) are investigated at various concentrations. Thermal stability was investigated by thermal analysis techniques, i.e., DSC/TGA, combined with FTIR spectrometry, and accelerating rate calorimetry (ARC). Twofold HMX/AP interaction result is observed: ammonium perchlorate as synergistic additive effectively (in 60 °C) reduces the onset decomposition temperature of HMX, whereas gaseous products of the HMX thermolysis, in turn, catalyze the AP decomposition. Burning rate of mechanical mixtures exceeds the HMX level at 4 MPa, when HMX content lies in the range close to above synergistic effect at thermolysis, and AP particle size is fine (10 μm). Addition of large AP particles to HMX does not enhance the burning rate. Comparative analysis of the combustion parameters of the mechanical mixtures and large HMX crystals covered with AP layer revealed that the direct contact between components is not a necessary condition for the HMX/AP interaction for compositions without binder, proving the gas-phase character of this effect. However, for compositions with active binder, the direct contact between components is important. Finally, the synergistic effect changes the decomposition pathway for mixtures with HMX content above 40 % and below 90 % and noticeably increases the burning rate of HMX-based compositions with active binder. Formulations with active binder and coated HMX provide higher burning rate than those ones with mechanical mixtures of HMX with fine AP. It means the possibility to use the considerably less amount of ammonium perchlorate to achieve the same level of the burning rate. More... »
PAGES365-381
Chemical Rocket Propulsion
ISBN
978-3-319-27746-2
978-3-319-27748-6
http://scigraph.springernature.com/pub.10.1007/978-3-319-27748-6_15
DOIhttp://dx.doi.org/10.1007/978-3-319-27748-6_15
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1000847305
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Semenov Institute of Chemical Physics, 119991, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.424930.8",
"name": [
"Semenov Institute of Chemical Physics, 119991, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Pivkina",
"givenName": "Alla N.",
"id": "sg:person.014714553131.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014714553131.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Semenov Institute of Chemical Physics, 119991, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.424930.8",
"name": [
"Semenov Institute of Chemical Physics, 119991, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Muravyev",
"givenName": "Nikita V.",
"id": "sg:person.013527324273.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527324273.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Semenov Institute of Chemical Physics, 119991, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.424930.8",
"name": [
"Semenov Institute of Chemical Physics, 119991, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Monogarov",
"givenName": "Konstantin A.",
"id": "sg:person.016002731531.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016002731531.69"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "PLC Central Scientific Design Bureau, 129110, Moscow, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"PLC Central Scientific Design Bureau, 129110, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Ostrovsky",
"givenName": "Valery G.",
"id": "sg:person.016615255233.22",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016615255233.22"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Zelinsky Institute of Organic Chemistry, 119991, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.439283.7",
"name": [
"Zelinsky Institute of Organic Chemistry, 119991, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Fomenkov",
"givenName": "Igor V.",
"id": "sg:person.011031106061.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011031106061.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Soyuz Federal Center for Dual-Use Technologies, 140090, Dzerzhinskii, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Soyuz Federal Center for Dual-Use Technologies, 140090, Dzerzhinskii, Russia"
],
"type": "Organization"
},
"familyName": "Milyokhin",
"givenName": "Yury M.",
"id": "sg:person.014365473447.32",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365473447.32"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Soyuz Federal Center for Dual-Use Technologies, 140090, Dzerzhinskii, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Soyuz Federal Center for Dual-Use Technologies, 140090, Dzerzhinskii, Russia"
],
"type": "Organization"
},
"familyName": "Shishov",
"givenName": "Nickolay I.",
"id": "sg:person.014430743251.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014430743251.17"
],
"type": "Person"
}
],
"datePublished": "2016-08-20",
"datePublishedReg": "2016-08-20",
"description": "The thermal decomposition and combustion of binary mixture of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and ammonium perchlorate (AP) are investigated at various concentrations. Thermal stability was investigated by thermal analysis techniques, i.e., DSC/TGA, combined with FTIR spectrometry, and accelerating rate calorimetry (ARC). Twofold HMX/AP interaction result is observed: ammonium perchlorate as synergistic additive effectively (in 60\u00a0\u00b0C) reduces the onset decomposition temperature of HMX, whereas gaseous products of the HMX thermolysis, in turn, catalyze the AP decomposition. Burning rate of mechanical mixtures exceeds the HMX level at 4\u00a0MPa, when HMX content lies in the range close to above synergistic effect at thermolysis, and AP particle size is fine (10\u00a0\u03bcm). Addition of large AP particles to HMX does not enhance the burning rate. Comparative analysis of the combustion parameters of the mechanical mixtures and large HMX crystals covered with AP layer revealed that the direct contact between components is not a necessary condition for the HMX/AP interaction for compositions without binder, proving the gas-phase character of this effect. However, for compositions with active binder, the direct contact between components is important. Finally, the synergistic effect changes the decomposition pathway for mixtures with HMX content above 40\u00a0% and below 90\u00a0% and noticeably increases the burning rate of HMX-based compositions with active binder. Formulations with active binder and coated HMX provide higher burning rate than those ones with mechanical mixtures of HMX with fine AP. It means the possibility to use the considerably less amount of ammonium perchlorate to achieve the same level of the burning rate.",
"editor": [
{
"familyName": "De Luca",
"givenName": "Luigi T.",
"type": "Person"
},
{
"familyName": "Shimada",
"givenName": "Toru",
"type": "Person"
},
{
"familyName": "Sinditskii",
"givenName": "Valery P.",
"type": "Person"
},
{
"familyName": "Calabro",
"givenName": "Max",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-27748-6_15",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-27746-2",
"978-3-319-27748-6"
],
"name": "Chemical Rocket Propulsion",
"type": "Book"
},
"keywords": [
"active binder",
"burning rate",
"ammonium perchlorate",
"mechanical mixture",
"large AP particles",
"rate of HMX",
"higher burning rate",
"fine ammonium perchlorate",
"AP particle size",
"onset decomposition temperature",
"combustion parameters",
"thermal analysis techniques",
"AP particles",
"HMX thermolysis",
"Ap layer",
"HMX content",
"rate calorimetry",
"HMX crystals",
"synergistic effect",
"gaseous products",
"thermal stability",
"particle size",
"DSC/TGA",
"binder",
"thermal analysis",
"decomposition temperature",
"AP decomposition",
"combustion",
"HMX",
"thermal decomposition",
"direct contact",
"FTIR spectrometry",
"mixture",
"MPa",
"binary mixtures",
"analysis techniques",
"decomposition",
"layer",
"particles",
"contact",
"temperature",
"composition",
"TGA",
"stability",
"tetrazocine",
"decomposition pathways",
"lesser amounts",
"calorimetry",
"parameters",
"perchlorate",
"components",
"formulation",
"effect",
"content",
"rate",
"necessary condition",
"interaction results",
"thermolysis",
"technique",
"range",
"conditions",
"same level",
"size",
"crystals",
"comparative analysis",
"analysis",
"amount",
"octahydro",
"results",
"products",
"addition",
"concentration",
"one",
"possibility",
"turn",
"interaction",
"AP interaction",
"levels",
"spectrometry",
"character",
"pathway"
],
"name": "Synergistic Effect of Ammonium Perchlorate on HMX: From Thermal Analysis to Combustion",
"pagination": "365-381",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1000847305"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-27748-6_15"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-27748-6_15",
"https://app.dimensions.ai/details/publication/pub.1000847305"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:32",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_349.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-27748-6_15"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-27748-6_15'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-27748-6_15'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-27748-6_15'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-27748-6_15'
This table displays all metadata directly associated to this object as RDF triples.
206 TRIPLES
23 PREDICATES
106 URIs
99 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-27748-6_15 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0915 |
3 | ″ | schema:author | Nbaad026574ba4e958b4c7ea92e8cc968 |
4 | ″ | schema:datePublished | 2016-08-20 |
5 | ″ | schema:datePublishedReg | 2016-08-20 |
6 | ″ | schema:description | The thermal decomposition and combustion of binary mixture of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and ammonium perchlorate (AP) are investigated at various concentrations. Thermal stability was investigated by thermal analysis techniques, i.e., DSC/TGA, combined with FTIR spectrometry, and accelerating rate calorimetry (ARC). Twofold HMX/AP interaction result is observed: ammonium perchlorate as synergistic additive effectively (in 60 °C) reduces the onset decomposition temperature of HMX, whereas gaseous products of the HMX thermolysis, in turn, catalyze the AP decomposition. Burning rate of mechanical mixtures exceeds the HMX level at 4 MPa, when HMX content lies in the range close to above synergistic effect at thermolysis, and AP particle size is fine (10 μm). Addition of large AP particles to HMX does not enhance the burning rate. Comparative analysis of the combustion parameters of the mechanical mixtures and large HMX crystals covered with AP layer revealed that the direct contact between components is not a necessary condition for the HMX/AP interaction for compositions without binder, proving the gas-phase character of this effect. However, for compositions with active binder, the direct contact between components is important. Finally, the synergistic effect changes the decomposition pathway for mixtures with HMX content above 40 % and below 90 % and noticeably increases the burning rate of HMX-based compositions with active binder. Formulations with active binder and coated HMX provide higher burning rate than those ones with mechanical mixtures of HMX with fine AP. It means the possibility to use the considerably less amount of ammonium perchlorate to achieve the same level of the burning rate. |
7 | ″ | schema:editor | N98b64188ac164db3a2c516ae8c6dfdf9 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N63236e9f26264edcba903814bc4b8c7c |
12 | ″ | schema:keywords | AP decomposition |
13 | ″ | ″ | AP interaction |
14 | ″ | ″ | AP particle size |
15 | ″ | ″ | AP particles |
16 | ″ | ″ | Ap layer |
17 | ″ | ″ | DSC/TGA |
18 | ″ | ″ | FTIR spectrometry |
19 | ″ | ″ | HMX |
20 | ″ | ″ | HMX content |
21 | ″ | ″ | HMX crystals |
22 | ″ | ″ | HMX thermolysis |
23 | ″ | ″ | MPa |
24 | ″ | ″ | TGA |
25 | ″ | ″ | active binder |
26 | ″ | ″ | addition |
27 | ″ | ″ | ammonium perchlorate |
28 | ″ | ″ | amount |
29 | ″ | ″ | analysis |
30 | ″ | ″ | analysis techniques |
31 | ″ | ″ | binary mixtures |
32 | ″ | ″ | binder |
33 | ″ | ″ | burning rate |
34 | ″ | ″ | calorimetry |
35 | ″ | ″ | character |
36 | ″ | ″ | combustion |
37 | ″ | ″ | combustion parameters |
38 | ″ | ″ | comparative analysis |
39 | ″ | ″ | components |
40 | ″ | ″ | composition |
41 | ″ | ″ | concentration |
42 | ″ | ″ | conditions |
43 | ″ | ″ | contact |
44 | ″ | ″ | content |
45 | ″ | ″ | crystals |
46 | ″ | ″ | decomposition |
47 | ″ | ″ | decomposition pathways |
48 | ″ | ″ | decomposition temperature |
49 | ″ | ″ | direct contact |
50 | ″ | ″ | effect |
51 | ″ | ″ | fine ammonium perchlorate |
52 | ″ | ″ | formulation |
53 | ″ | ″ | gaseous products |
54 | ″ | ″ | higher burning rate |
55 | ″ | ″ | interaction |
56 | ″ | ″ | interaction results |
57 | ″ | ″ | large AP particles |
58 | ″ | ″ | layer |
59 | ″ | ″ | lesser amounts |
60 | ″ | ″ | levels |
61 | ″ | ″ | mechanical mixture |
62 | ″ | ″ | mixture |
63 | ″ | ″ | necessary condition |
64 | ″ | ″ | octahydro |
65 | ″ | ″ | one |
66 | ″ | ″ | onset decomposition temperature |
67 | ″ | ″ | parameters |
68 | ″ | ″ | particle size |
69 | ″ | ″ | particles |
70 | ″ | ″ | pathway |
71 | ″ | ″ | perchlorate |
72 | ″ | ″ | possibility |
73 | ″ | ″ | products |
74 | ″ | ″ | range |
75 | ″ | ″ | rate |
76 | ″ | ″ | rate calorimetry |
77 | ″ | ″ | rate of HMX |
78 | ″ | ″ | results |
79 | ″ | ″ | same level |
80 | ″ | ″ | size |
81 | ″ | ″ | spectrometry |
82 | ″ | ″ | stability |
83 | ″ | ″ | synergistic effect |
84 | ″ | ″ | technique |
85 | ″ | ″ | temperature |
86 | ″ | ″ | tetrazocine |
87 | ″ | ″ | thermal analysis |
88 | ″ | ″ | thermal analysis techniques |
89 | ″ | ″ | thermal decomposition |
90 | ″ | ″ | thermal stability |
91 | ″ | ″ | thermolysis |
92 | ″ | ″ | turn |
93 | ″ | schema:name | Synergistic Effect of Ammonium Perchlorate on HMX: From Thermal Analysis to Combustion |
94 | ″ | schema:pagination | 365-381 |
95 | ″ | schema:productId | Nac5944938b604616934337b617eb60f9 |
96 | ″ | ″ | Nad6c785fa7e44852989691d2c64cf8be |
97 | ″ | schema:publisher | Ncc3b450c49b841c784e1ebe2eff4fc54 |
98 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000847305 |
99 | ″ | ″ | https://doi.org/10.1007/978-3-319-27748-6_15 |
100 | ″ | schema:sdDatePublished | 2022-06-01T22:32 |
101 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
102 | ″ | schema:sdPublisher | N1f58130fd47d4fa89fc171e5d7def945 |
103 | ″ | schema:url | https://doi.org/10.1007/978-3-319-27748-6_15 |
104 | ″ | sgo:license | sg:explorer/license/ |
105 | ″ | sgo:sdDataset | chapters |
106 | ″ | rdf:type | schema:Chapter |
107 | N03f9a0fab220465caf94703a91e2c17e | rdf:first | sg:person.014365473447.32 |
108 | ″ | rdf:rest | Ne751a49fb7ae43aeb8a16decc428cad6 |
109 | N1f58130fd47d4fa89fc171e5d7def945 | schema:name | Springer Nature - SN SciGraph project |
110 | ″ | rdf:type | schema:Organization |
111 | N24748cf997de4a4c9bc2eac0e0aeda32 | rdf:first | N5bd1e809fe844476a8f44597b7cfce3a |
112 | ″ | rdf:rest | Nf0dad70e95ec4c47a34e65e4a469ca3f |
113 | N3f9cebb82c0c4812921ee4bb37681746 | rdf:first | sg:person.011031106061.37 |
114 | ″ | rdf:rest | N03f9a0fab220465caf94703a91e2c17e |
115 | N5bd1e809fe844476a8f44597b7cfce3a | schema:familyName | Shimada |
116 | ″ | schema:givenName | Toru |
117 | ″ | rdf:type | schema:Person |
118 | N63236e9f26264edcba903814bc4b8c7c | schema:isbn | 978-3-319-27746-2 |
119 | ″ | ″ | 978-3-319-27748-6 |
120 | ″ | schema:name | Chemical Rocket Propulsion |
121 | ″ | rdf:type | schema:Book |
122 | N7abfacc7337a42c7b508a9b5a8aab282 | schema:familyName | Sinditskii |
123 | ″ | schema:givenName | Valery P. |
124 | ″ | rdf:type | schema:Person |
125 | N7e081801029e422db083c55e11ebc0c4 | schema:familyName | De Luca |
126 | ″ | schema:givenName | Luigi T. |
127 | ″ | rdf:type | schema:Person |
128 | N98b64188ac164db3a2c516ae8c6dfdf9 | rdf:first | N7e081801029e422db083c55e11ebc0c4 |
129 | ″ | rdf:rest | N24748cf997de4a4c9bc2eac0e0aeda32 |
130 | N99186706d32d421185b17ead3f4728ad | schema:familyName | Calabro |
131 | ″ | schema:givenName | Max |
132 | ″ | rdf:type | schema:Person |
133 | Na9219faf2e644205a2b18cfe13b89157 | rdf:first | sg:person.016002731531.69 |
134 | ″ | rdf:rest | Nbab3085679f044b0b5c8d3aec43abb1c |
135 | Nac5944938b604616934337b617eb60f9 | schema:name | dimensions_id |
136 | ″ | schema:value | pub.1000847305 |
137 | ″ | rdf:type | schema:PropertyValue |
138 | Nad6c785fa7e44852989691d2c64cf8be | schema:name | doi |
139 | ″ | schema:value | 10.1007/978-3-319-27748-6_15 |
140 | ″ | rdf:type | schema:PropertyValue |
141 | Nbaad026574ba4e958b4c7ea92e8cc968 | rdf:first | sg:person.014714553131.39 |
142 | ″ | rdf:rest | Nce424b398efa474e890bf09bc592d4eb |
143 | Nbab3085679f044b0b5c8d3aec43abb1c | rdf:first | sg:person.016615255233.22 |
144 | ″ | rdf:rest | N3f9cebb82c0c4812921ee4bb37681746 |
145 | Ncc3b450c49b841c784e1ebe2eff4fc54 | schema:name | Springer Nature |
146 | ″ | rdf:type | schema:Organisation |
147 | Nce424b398efa474e890bf09bc592d4eb | rdf:first | sg:person.013527324273.31 |
148 | ″ | rdf:rest | Na9219faf2e644205a2b18cfe13b89157 |
149 | Ndffa2d82723e4c9da2cf3906f56c3a0d | rdf:first | N99186706d32d421185b17ead3f4728ad |
150 | ″ | rdf:rest | rdf:nil |
151 | Ne751a49fb7ae43aeb8a16decc428cad6 | rdf:first | sg:person.014430743251.17 |
152 | ″ | rdf:rest | rdf:nil |
153 | Nf0dad70e95ec4c47a34e65e4a469ca3f | rdf:first | N7abfacc7337a42c7b508a9b5a8aab282 |
154 | ″ | rdf:rest | Ndffa2d82723e4c9da2cf3906f56c3a0d |
155 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
156 | ″ | schema:name | Engineering |
157 | ″ | rdf:type | schema:DefinedTerm |
158 | anzsrc-for:0915 | schema:inDefinedTermSet | anzsrc-for: |
159 | ″ | schema:name | Interdisciplinary Engineering |
160 | ″ | rdf:type | schema:DefinedTerm |
161 | sg:person.011031106061.37 | schema:affiliation | grid-institutes:grid.439283.7 |
162 | ″ | schema:familyName | Fomenkov |
163 | ″ | schema:givenName | Igor V. |
164 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011031106061.37 |
165 | ″ | rdf:type | schema:Person |
166 | sg:person.013527324273.31 | schema:affiliation | grid-institutes:grid.424930.8 |
167 | ″ | schema:familyName | Muravyev |
168 | ″ | schema:givenName | Nikita V. |
169 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527324273.31 |
170 | ″ | rdf:type | schema:Person |
171 | sg:person.014365473447.32 | schema:affiliation | grid-institutes:None |
172 | ″ | schema:familyName | Milyokhin |
173 | ″ | schema:givenName | Yury M. |
174 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365473447.32 |
175 | ″ | rdf:type | schema:Person |
176 | sg:person.014430743251.17 | schema:affiliation | grid-institutes:None |
177 | ″ | schema:familyName | Shishov |
178 | ″ | schema:givenName | Nickolay I. |
179 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014430743251.17 |
180 | ″ | rdf:type | schema:Person |
181 | sg:person.014714553131.39 | schema:affiliation | grid-institutes:grid.424930.8 |
182 | ″ | schema:familyName | Pivkina |
183 | ″ | schema:givenName | Alla N. |
184 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014714553131.39 |
185 | ″ | rdf:type | schema:Person |
186 | sg:person.016002731531.69 | schema:affiliation | grid-institutes:grid.424930.8 |
187 | ″ | schema:familyName | Monogarov |
188 | ″ | schema:givenName | Konstantin A. |
189 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016002731531.69 |
190 | ″ | rdf:type | schema:Person |
191 | sg:person.016615255233.22 | schema:affiliation | grid-institutes:None |
192 | ″ | schema:familyName | Ostrovsky |
193 | ″ | schema:givenName | Valery G. |
194 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016615255233.22 |
195 | ″ | rdf:type | schema:Person |
196 | grid-institutes:None | schema:alternateName | PLC Central Scientific Design Bureau, 129110, Moscow, Russia |
197 | ″ | ″ | Soyuz Federal Center for Dual-Use Technologies, 140090, Dzerzhinskii, Russia |
198 | ″ | schema:name | PLC Central Scientific Design Bureau, 129110, Moscow, Russia |
199 | ″ | ″ | Soyuz Federal Center for Dual-Use Technologies, 140090, Dzerzhinskii, Russia |
200 | ″ | rdf:type | schema:Organization |
201 | grid-institutes:grid.424930.8 | schema:alternateName | Semenov Institute of Chemical Physics, 119991, Moscow, Russia |
202 | ″ | schema:name | Semenov Institute of Chemical Physics, 119991, Moscow, Russia |
203 | ″ | rdf:type | schema:Organization |
204 | grid-institutes:grid.439283.7 | schema:alternateName | Zelinsky Institute of Organic Chemistry, 119991, Moscow, Russia |
205 | ″ | schema:name | Zelinsky Institute of Organic Chemistry, 119991, Moscow, Russia |
206 | ″ | rdf:type | schema:Organization |