Intermolecular Interactions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2017-01-29

AUTHORS

Alston J. Misquitta

ABSTRACT

Van der Waals interactions determine a number of phenomena in the fields of physics, chemistry and biology. As we seek to increase our understanding of physical systems and develop detailed and more predictive theoretical models, it becomes even more important to provide an accurate description of the underlying molecular interactions. The goal of this chapter is to describe recent developments in the theory of intermolecular interactions that have revolutionised the field due to their comparatively low computational costs and high accuracies. These are the symmetry-adapted perturbation theory based on density functional theory (SAPT(DFT)) for interaction energies and the Williams–Stone–Misquitta (WSM) method for molecular properties in distributed form. These theories are applicable to systems of small organic molecules containing as many as 30 atoms each and have demonstrated accuracies comparable to the best electronic structure methods. We also discuss the numerical aspects of these theories and recent applications which demonstrate the range of problems that can now be approached with these accurate ab initio methods. More... »

PAGES

295-335

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-27282-5_6

DOI

http://dx.doi.org/10.1007/978-3-319-27282-5_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083408974


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Physics, Queen Mary, University of London, Mile End Road, E1 4NS, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.4464.2", 
          "name": [
            "TCM Group, 19, J J Thomson Avenue, CB3 0HE, Cambridge, UK", 
            "School of Physics, Queen Mary, University of London, Mile End Road, E1 4NS, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Misquitta", 
        "givenName": "Alston J.", 
        "id": "sg:person.01360374013.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360374013.40"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-01-29", 
    "datePublishedReg": "2017-01-29", 
    "description": "Van der Waals interactions determine a number of phenomena in the fields of physics, chemistry and biology. As we seek to increase our understanding of physical systems and develop detailed and more predictive theoretical models, it becomes even more important to provide an accurate description of the underlying molecular interactions. The goal of this chapter is to describe recent developments in the theory of intermolecular interactions that have revolutionised the field due to their comparatively low computational costs and high accuracies. These are the symmetry-adapted perturbation theory based on density functional theory (SAPT(DFT)) for interaction energies and the Williams\u2013Stone\u2013Misquitta (WSM) method for molecular properties in distributed form. These theories are applicable to systems of small organic molecules containing as many as 30 atoms each and have demonstrated accuracies comparable to the best electronic structure methods. We also discuss the numerical aspects of these theories and recent applications which demonstrate the range of problems that can now be approached with these accurate ab initio methods.", 
    "editor": [
      {
        "familyName": "Leszczynski", 
        "givenName": "Jerzy", 
        "type": "Person"
      }, 
      {
        "familyName": "Kaczmarek-Kedziera", 
        "givenName": "Anna", 
        "type": "Person"
      }, 
      {
        "familyName": "Puzyn", 
        "givenName": "Tomasz", 
        "type": "Person"
      }, 
      {
        "familyName": "G. Papadopoulos", 
        "givenName": "Manthos", 
        "type": "Person"
      }, 
      {
        "familyName": "Reis", 
        "givenName": "Heribert", 
        "type": "Person"
      }, 
      {
        "familyName": "K. Shukla", 
        "givenName": "Manoj", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-27282-5_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-27281-8", 
        "978-3-319-27282-5"
      ], 
      "name": "Handbook of Computational Chemistry", 
      "type": "Book"
    }, 
    "keywords": [
      "intermolecular interactions", 
      "van der Waals interactions", 
      "small organic molecules", 
      "fields of physics", 
      "accurate ab initio methods", 
      "der Waals interactions", 
      "symmetry-adapted perturbation theory", 
      "ab initio methods", 
      "electronic structure methods", 
      "density functional theory", 
      "Misquitta method", 
      "Williams\u2013Stone", 
      "low computational cost", 
      "organic molecules", 
      "physical systems", 
      "numerical aspects", 
      "Waals interactions", 
      "perturbation theory", 
      "initio methods", 
      "computational cost", 
      "functional theory", 
      "interaction energy", 
      "molecular properties", 
      "structure methods", 
      "molecular interactions", 
      "range of problems", 
      "number of phenomena", 
      "accurate description", 
      "recent applications", 
      "theory", 
      "predictive theoretical model", 
      "theoretical model", 
      "high accuracy", 
      "chemistry", 
      "physics", 
      "recent developments", 
      "field", 
      "molecules", 
      "interaction", 
      "atoms", 
      "accuracy", 
      "problem", 
      "system", 
      "properties", 
      "description", 
      "model", 
      "method", 
      "energy", 
      "phenomenon", 
      "applications", 
      "range", 
      "number", 
      "form", 
      "cost", 
      "chapter", 
      "biology", 
      "goal", 
      "aspects", 
      "development", 
      "understanding"
    ], 
    "name": "Intermolecular Interactions", 
    "pagination": "295-335", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083408974"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-27282-5_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-27282-5_6", 
      "https://app.dimensions.ai/details/publication/pub.1083408974"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_144.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-27282-5_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-27282-5_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-27282-5_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-27282-5_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-27282-5_6'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      23 PREDICATES      85 URIs      77 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-27282-5_6 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:0307
4 schema:author N7fed369f559a4218b2e3509e01615b23
5 schema:datePublished 2017-01-29
6 schema:datePublishedReg 2017-01-29
7 schema:description Van der Waals interactions determine a number of phenomena in the fields of physics, chemistry and biology. As we seek to increase our understanding of physical systems and develop detailed and more predictive theoretical models, it becomes even more important to provide an accurate description of the underlying molecular interactions. The goal of this chapter is to describe recent developments in the theory of intermolecular interactions that have revolutionised the field due to their comparatively low computational costs and high accuracies. These are the symmetry-adapted perturbation theory based on density functional theory (SAPT(DFT)) for interaction energies and the Williams–Stone–Misquitta (WSM) method for molecular properties in distributed form. These theories are applicable to systems of small organic molecules containing as many as 30 atoms each and have demonstrated accuracies comparable to the best electronic structure methods. We also discuss the numerical aspects of these theories and recent applications which demonstrate the range of problems that can now be approached with these accurate ab initio methods.
8 schema:editor N06a7e3ff69ac499a809110878fee7e71
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N2d2e1cf59b254fbda2b24b64e76a5843
13 schema:keywords Misquitta method
14 Waals interactions
15 Williams–Stone
16 ab initio methods
17 accuracy
18 accurate ab initio methods
19 accurate description
20 applications
21 aspects
22 atoms
23 biology
24 chapter
25 chemistry
26 computational cost
27 cost
28 density functional theory
29 der Waals interactions
30 description
31 development
32 electronic structure methods
33 energy
34 field
35 fields of physics
36 form
37 functional theory
38 goal
39 high accuracy
40 initio methods
41 interaction
42 interaction energy
43 intermolecular interactions
44 low computational cost
45 method
46 model
47 molecular interactions
48 molecular properties
49 molecules
50 number
51 number of phenomena
52 numerical aspects
53 organic molecules
54 perturbation theory
55 phenomenon
56 physical systems
57 physics
58 predictive theoretical model
59 problem
60 properties
61 range
62 range of problems
63 recent applications
64 recent developments
65 small organic molecules
66 structure methods
67 symmetry-adapted perturbation theory
68 system
69 theoretical model
70 theory
71 understanding
72 van der Waals interactions
73 schema:name Intermolecular Interactions
74 schema:pagination 295-335
75 schema:productId N5489e9f45e154080a6a28d0d1ef92535
76 N5b0b480516f547a9b59b205023ef6be7
77 schema:publisher N17be47f9b903481faad8e7ee3b338510
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083408974
79 https://doi.org/10.1007/978-3-319-27282-5_6
80 schema:sdDatePublished 2022-06-01T22:28
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N02f686d04f28406cb6bf5253f1a10601
83 schema:url https://doi.org/10.1007/978-3-319-27282-5_6
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N02f686d04f28406cb6bf5253f1a10601 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N06a7e3ff69ac499a809110878fee7e71 rdf:first N6aa137124db24b15ae34ef901e227cbf
90 rdf:rest N84fc790826b04734aa92630fb0652665
91 N17be47f9b903481faad8e7ee3b338510 schema:name Springer Nature
92 rdf:type schema:Organisation
93 N1e9460f5ea3b4214b18934d4c20ae311 rdf:first Nc07cfd003d5046cf9a1336aaac0ff1c8
94 rdf:rest N544d0a011a164e9f873181709425827c
95 N2d2e1cf59b254fbda2b24b64e76a5843 schema:isbn 978-3-319-27281-8
96 978-3-319-27282-5
97 schema:name Handbook of Computational Chemistry
98 rdf:type schema:Book
99 N544d0a011a164e9f873181709425827c rdf:first Nb3dd89a3032b45f1a523bfb41a3f1d4b
100 rdf:rest N843e450f9cd24ee98dc977f09f434d4a
101 N5489e9f45e154080a6a28d0d1ef92535 schema:name dimensions_id
102 schema:value pub.1083408974
103 rdf:type schema:PropertyValue
104 N5b0b480516f547a9b59b205023ef6be7 schema:name doi
105 schema:value 10.1007/978-3-319-27282-5_6
106 rdf:type schema:PropertyValue
107 N6aa137124db24b15ae34ef901e227cbf schema:familyName Leszczynski
108 schema:givenName Jerzy
109 rdf:type schema:Person
110 N6e0ef29728da462592fd269f29e2c9e1 rdf:first Nf836480288254087aa0f2492b16326f1
111 rdf:rest rdf:nil
112 N7fed369f559a4218b2e3509e01615b23 rdf:first sg:person.01360374013.40
113 rdf:rest rdf:nil
114 N830d990b210542d18b732d76bac6de29 schema:familyName Kaczmarek-Kedziera
115 schema:givenName Anna
116 rdf:type schema:Person
117 N843e450f9cd24ee98dc977f09f434d4a rdf:first Nf3e1a8ada2af4f5f8742a160d944de64
118 rdf:rest N6e0ef29728da462592fd269f29e2c9e1
119 N84fc790826b04734aa92630fb0652665 rdf:first N830d990b210542d18b732d76bac6de29
120 rdf:rest N1e9460f5ea3b4214b18934d4c20ae311
121 Nb3dd89a3032b45f1a523bfb41a3f1d4b schema:familyName G. Papadopoulos
122 schema:givenName Manthos
123 rdf:type schema:Person
124 Nc07cfd003d5046cf9a1336aaac0ff1c8 schema:familyName Puzyn
125 schema:givenName Tomasz
126 rdf:type schema:Person
127 Nf3e1a8ada2af4f5f8742a160d944de64 schema:familyName Reis
128 schema:givenName Heribert
129 rdf:type schema:Person
130 Nf836480288254087aa0f2492b16326f1 schema:familyName K. Shukla
131 schema:givenName Manoj
132 rdf:type schema:Person
133 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
134 schema:name Chemical Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
137 schema:name Physical Chemistry (incl. Structural)
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
140 schema:name Theoretical and Computational Chemistry
141 rdf:type schema:DefinedTerm
142 sg:person.01360374013.40 schema:affiliation grid-institutes:grid.4464.2
143 schema:familyName Misquitta
144 schema:givenName Alston J.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360374013.40
146 rdf:type schema:Person
147 grid-institutes:grid.4464.2 schema:alternateName School of Physics, Queen Mary, University of London, Mile End Road, E1 4NS, London, UK
148 schema:name School of Physics, Queen Mary, University of London, Mile End Road, E1 4NS, London, UK
149 TCM Group, 19, J J Thomson Avenue, CB3 0HE, Cambridge, UK
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...