Ontology type: schema:Chapter
2015-11-29
AUTHORSPaul Ellinghaus , Mihail Nedjalkov , Siegfried Selberherr
ABSTRACTThe control of coherent electrons is becoming relevant in emerging devices as (semi-)ballistic transport is observed within nanometer semiconductor structures at room temperature. The evolution of a wave packet – representing an electron in a semiconductor – can be manipulated using specially shaped potential profiles with convex or concave features, similar to refractive lenses used in optics. Such electrostatic lenses offer the possibility, for instance, to concentrate a single wave packet which has been invoked by a laser pulse, or split it up into several wave packets. Moreover, the shape of the potential profile can be dynamically changed by an externally applied potential, depending on the desired behaviour. The evolution of a wave packet under the influence of a two-dimensional potential – the electrostatic lens – is investigated by computing the physical densities using the Wigner function. The latter is obtained by using the signed-particle Wigner Monte Carlo method. More... »
PAGES277-284
Large-Scale Scientific Computing
ISBN
978-3-319-26519-3
978-3-319-26520-9
http://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_30
DOIhttp://dx.doi.org/10.1007/978-3-319-26520-9_30
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1018438524
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU Wien, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Ellinghaus",
"givenName": "Paul",
"id": "sg:person.016442755635.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442755635.85"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU Wien, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Nedjalkov",
"givenName": "Mihail",
"id": "sg:person.011142023427.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria",
"id": "http://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Microelectronics, TU Wien, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Selberherr",
"givenName": "Siegfried",
"id": "sg:person.013033344117.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
],
"type": "Person"
}
],
"datePublished": "2015-11-29",
"datePublishedReg": "2015-11-29",
"description": "The control of coherent electrons is becoming relevant in emerging devices as (semi-)ballistic transport is observed within nanometer semiconductor structures at room temperature. The evolution of a wave packet \u2013 representing an electron in a semiconductor \u2013 can be manipulated using specially shaped potential profiles with convex or concave features, similar to refractive lenses used in optics. Such electrostatic lenses offer the possibility, for instance, to concentrate a single wave packet which has been invoked by a laser pulse, or split it up into several wave packets. Moreover, the shape of the potential profile can be dynamically changed by an externally applied potential, depending on the desired behaviour. The evolution of a wave packet under the influence of a two-dimensional potential \u2013 the electrostatic lens \u2013 is investigated by computing the physical densities using the Wigner function. The latter is obtained by using the signed-particle Wigner Monte Carlo method.",
"editor": [
{
"familyName": "Lirkov",
"givenName": "Ivan",
"type": "Person"
},
{
"familyName": "Margenov",
"givenName": "Svetozar D.",
"type": "Person"
},
{
"familyName": "Wa\u015bniewski",
"givenName": "Jerzy",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-26520-9_30",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-26519-3",
"978-3-319-26520-9"
],
"name": "Large-Scale Scientific Computing",
"type": "Book"
},
"keywords": [
"wave packets",
"electrostatic lenses",
"potential profile",
"Wigner Monte Carlo method",
"wave packet dynamics",
"single wave packet",
"two-dimensional potential",
"laser pulses",
"coherent electron",
"refractive lenses",
"packet dynamics",
"electrostatic lens",
"Wigner function",
"semiconductor structures",
"Monte Carlo method",
"electrons",
"physical density",
"Carlo method",
"room temperature",
"lenses",
"optics",
"semiconductors",
"pulses",
"concave features",
"waves",
"packets",
"convex",
"applied potential",
"evolution",
"devices",
"density",
"lens",
"dynamics",
"temperature",
"transport",
"profile",
"potential",
"structure",
"shape",
"possibility",
"latter",
"function",
"instances",
"influence",
"behavior",
"features",
"method",
"control"
],
"name": "The Influence of Electrostatic Lenses on Wave Packet Dynamics",
"pagination": "277-284",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1018438524"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-26520-9_30"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-26520-9_30",
"https://app.dimensions.ai/details/publication/pub.1018438524"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_332.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-26520-9_30"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_30'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_30'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_30'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_30'
This table displays all metadata directly associated to this object as RDF triples.
132 TRIPLES
23 PREDICATES
73 URIs
66 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-26520-9_30 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | N7ee8dec815e44f28907df6003be03fdc |
4 | ″ | schema:datePublished | 2015-11-29 |
5 | ″ | schema:datePublishedReg | 2015-11-29 |
6 | ″ | schema:description | The control of coherent electrons is becoming relevant in emerging devices as (semi-)ballistic transport is observed within nanometer semiconductor structures at room temperature. The evolution of a wave packet – representing an electron in a semiconductor – can be manipulated using specially shaped potential profiles with convex or concave features, similar to refractive lenses used in optics. Such electrostatic lenses offer the possibility, for instance, to concentrate a single wave packet which has been invoked by a laser pulse, or split it up into several wave packets. Moreover, the shape of the potential profile can be dynamically changed by an externally applied potential, depending on the desired behaviour. The evolution of a wave packet under the influence of a two-dimensional potential – the electrostatic lens – is investigated by computing the physical densities using the Wigner function. The latter is obtained by using the signed-particle Wigner Monte Carlo method. |
7 | ″ | schema:editor | N9bf7eaa22a7e4b96a06be8ddd3f57759 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Ndad8763b9c1b4c0faa598859973cf94d |
12 | ″ | schema:keywords | Carlo method |
13 | ″ | ″ | Monte Carlo method |
14 | ″ | ″ | Wigner Monte Carlo method |
15 | ″ | ″ | Wigner function |
16 | ″ | ″ | applied potential |
17 | ″ | ″ | behavior |
18 | ″ | ″ | coherent electron |
19 | ″ | ″ | concave features |
20 | ″ | ″ | control |
21 | ″ | ″ | convex |
22 | ″ | ″ | density |
23 | ″ | ″ | devices |
24 | ″ | ″ | dynamics |
25 | ″ | ″ | electrons |
26 | ″ | ″ | electrostatic lens |
27 | ″ | ″ | electrostatic lenses |
28 | ″ | ″ | evolution |
29 | ″ | ″ | features |
30 | ″ | ″ | function |
31 | ″ | ″ | influence |
32 | ″ | ″ | instances |
33 | ″ | ″ | laser pulses |
34 | ″ | ″ | latter |
35 | ″ | ″ | lens |
36 | ″ | ″ | lenses |
37 | ″ | ″ | method |
38 | ″ | ″ | optics |
39 | ″ | ″ | packet dynamics |
40 | ″ | ″ | packets |
41 | ″ | ″ | physical density |
42 | ″ | ″ | possibility |
43 | ″ | ″ | potential |
44 | ″ | ″ | potential profile |
45 | ″ | ″ | profile |
46 | ″ | ″ | pulses |
47 | ″ | ″ | refractive lenses |
48 | ″ | ″ | room temperature |
49 | ″ | ″ | semiconductor structures |
50 | ″ | ″ | semiconductors |
51 | ″ | ″ | shape |
52 | ″ | ″ | single wave packet |
53 | ″ | ″ | structure |
54 | ″ | ″ | temperature |
55 | ″ | ″ | transport |
56 | ″ | ″ | two-dimensional potential |
57 | ″ | ″ | wave packet dynamics |
58 | ″ | ″ | wave packets |
59 | ″ | ″ | waves |
60 | ″ | schema:name | The Influence of Electrostatic Lenses on Wave Packet Dynamics |
61 | ″ | schema:pagination | 277-284 |
62 | ″ | schema:productId | N92129ba6fad14d549bdbc5e5b23a4e60 |
63 | ″ | ″ | Nd6c489e100454f63a6f2e32fa61bca45 |
64 | ″ | schema:publisher | N3ccb5ff787de48f5a1ec1d5f4cf79118 |
65 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018438524 |
66 | ″ | ″ | https://doi.org/10.1007/978-3-319-26520-9_30 |
67 | ″ | schema:sdDatePublished | 2022-05-10T10:47 |
68 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
69 | ″ | schema:sdPublisher | N82eb7c9bc610484cadcee7611be5e1f6 |
70 | ″ | schema:url | https://doi.org/10.1007/978-3-319-26520-9_30 |
71 | ″ | sgo:license | sg:explorer/license/ |
72 | ″ | sgo:sdDataset | chapters |
73 | ″ | rdf:type | schema:Chapter |
74 | N069f769e98c245fca0ef5b7a742bd500 | rdf:first | sg:person.013033344117.92 |
75 | ″ | rdf:rest | rdf:nil |
76 | N17727642113340d5ac4519991b3397b1 | rdf:first | sg:person.011142023427.48 |
77 | ″ | rdf:rest | N069f769e98c245fca0ef5b7a742bd500 |
78 | N3ccb5ff787de48f5a1ec1d5f4cf79118 | schema:name | Springer Nature |
79 | ″ | rdf:type | schema:Organisation |
80 | N64d53f4ca8354052b5e1cb8331569681 | rdf:first | N87122a4d510a4bc29e578e72abb52192 |
81 | ″ | rdf:rest | rdf:nil |
82 | N72f1b717682944cfa2a762946ea64535 | schema:familyName | Lirkov |
83 | ″ | schema:givenName | Ivan |
84 | ″ | rdf:type | schema:Person |
85 | N7ee8dec815e44f28907df6003be03fdc | rdf:first | sg:person.016442755635.85 |
86 | ″ | rdf:rest | N17727642113340d5ac4519991b3397b1 |
87 | N80334bea23374c029af86b909117ba55 | rdf:first | Nc2522569429a4600bd8d7402dffc8235 |
88 | ″ | rdf:rest | N64d53f4ca8354052b5e1cb8331569681 |
89 | N82eb7c9bc610484cadcee7611be5e1f6 | schema:name | Springer Nature - SN SciGraph project |
90 | ″ | rdf:type | schema:Organization |
91 | N87122a4d510a4bc29e578e72abb52192 | schema:familyName | Waśniewski |
92 | ″ | schema:givenName | Jerzy |
93 | ″ | rdf:type | schema:Person |
94 | N92129ba6fad14d549bdbc5e5b23a4e60 | schema:name | doi |
95 | ″ | schema:value | 10.1007/978-3-319-26520-9_30 |
96 | ″ | rdf:type | schema:PropertyValue |
97 | N9bf7eaa22a7e4b96a06be8ddd3f57759 | rdf:first | N72f1b717682944cfa2a762946ea64535 |
98 | ″ | rdf:rest | N80334bea23374c029af86b909117ba55 |
99 | Nc2522569429a4600bd8d7402dffc8235 | schema:familyName | Margenov |
100 | ″ | schema:givenName | Svetozar D. |
101 | ″ | rdf:type | schema:Person |
102 | Nd6c489e100454f63a6f2e32fa61bca45 | schema:name | dimensions_id |
103 | ″ | schema:value | pub.1018438524 |
104 | ″ | rdf:type | schema:PropertyValue |
105 | Ndad8763b9c1b4c0faa598859973cf94d | schema:isbn | 978-3-319-26519-3 |
106 | ″ | ″ | 978-3-319-26520-9 |
107 | ″ | schema:name | Large-Scale Scientific Computing |
108 | ″ | rdf:type | schema:Book |
109 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Physical Sciences |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Other Physical Sciences |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | sg:person.011142023427.48 | schema:affiliation | grid-institutes:grid.5329.d |
116 | ″ | schema:familyName | Nedjalkov |
117 | ″ | schema:givenName | Mihail |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48 |
119 | ″ | rdf:type | schema:Person |
120 | sg:person.013033344117.92 | schema:affiliation | grid-institutes:grid.5329.d |
121 | ″ | schema:familyName | Selberherr |
122 | ″ | schema:givenName | Siegfried |
123 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92 |
124 | ″ | rdf:type | schema:Person |
125 | sg:person.016442755635.85 | schema:affiliation | grid-institutes:grid.5329.d |
126 | ″ | schema:familyName | Ellinghaus |
127 | ″ | schema:givenName | Paul |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442755635.85 |
129 | ″ | rdf:type | schema:Person |
130 | grid-institutes:grid.5329.d | schema:alternateName | Institute for Microelectronics, TU Wien, Vienna, Austria |
131 | ″ | schema:name | Institute for Microelectronics, TU Wien, Vienna, Austria |
132 | ″ | rdf:type | schema:Organization |