The Influence of Electrostatic Lenses on Wave Packet Dynamics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-11-29

AUTHORS

Paul Ellinghaus , Mihail Nedjalkov , Siegfried Selberherr

ABSTRACT

The control of coherent electrons is becoming relevant in emerging devices as (semi-)ballistic transport is observed within nanometer semiconductor structures at room temperature. The evolution of a wave packet – representing an electron in a semiconductor – can be manipulated using specially shaped potential profiles with convex or concave features, similar to refractive lenses used in optics. Such electrostatic lenses offer the possibility, for instance, to concentrate a single wave packet which has been invoked by a laser pulse, or split it up into several wave packets. Moreover, the shape of the potential profile can be dynamically changed by an externally applied potential, depending on the desired behaviour. The evolution of a wave packet under the influence of a two-dimensional potential – the electrostatic lens – is investigated by computing the physical densities using the Wigner function. The latter is obtained by using the signed-particle Wigner Monte Carlo method. More... »

PAGES

277-284

Book

TITLE

Large-Scale Scientific Computing

ISBN

978-3-319-26519-3
978-3-319-26520-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_30

DOI

http://dx.doi.org/10.1007/978-3-319-26520-9_30

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018438524


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ellinghaus", 
        "givenName": "Paul", 
        "id": "sg:person.016442755635.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442755635.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nedjalkov", 
        "givenName": "Mihail", 
        "id": "sg:person.011142023427.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Selberherr", 
        "givenName": "Siegfried", 
        "id": "sg:person.013033344117.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-11-29", 
    "datePublishedReg": "2015-11-29", 
    "description": "The control of coherent electrons is becoming relevant in emerging devices as (semi-)ballistic transport is observed within nanometer semiconductor structures at room temperature. The evolution of a wave packet \u2013 representing an electron in a semiconductor \u2013 can be manipulated using specially shaped potential profiles with convex or concave features, similar to refractive lenses used in optics. Such electrostatic lenses offer the possibility, for instance, to concentrate a single wave packet which has been invoked by a laser pulse, or split it up into several wave packets. Moreover, the shape of the potential profile can be dynamically changed by an externally applied potential, depending on the desired behaviour. The evolution of a wave packet under the influence of a two-dimensional potential \u2013 the electrostatic lens \u2013 is investigated by computing the physical densities using the Wigner function. The latter is obtained by using the signed-particle Wigner Monte Carlo method.", 
    "editor": [
      {
        "familyName": "Lirkov", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "familyName": "Margenov", 
        "givenName": "Svetozar D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Wa\u015bniewski", 
        "givenName": "Jerzy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-26520-9_30", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-26519-3", 
        "978-3-319-26520-9"
      ], 
      "name": "Large-Scale Scientific Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "wave packets", 
      "electrostatic lenses", 
      "potential profile", 
      "Wigner Monte Carlo method", 
      "wave packet dynamics", 
      "single wave packet", 
      "two-dimensional potential", 
      "laser pulses", 
      "coherent electron", 
      "refractive lenses", 
      "packet dynamics", 
      "electrostatic lens", 
      "Wigner function", 
      "semiconductor structures", 
      "Monte Carlo method", 
      "electrons", 
      "physical density", 
      "Carlo method", 
      "room temperature", 
      "lenses", 
      "optics", 
      "semiconductors", 
      "pulses", 
      "concave features", 
      "waves", 
      "packets", 
      "convex", 
      "applied potential", 
      "evolution", 
      "devices", 
      "density", 
      "lens", 
      "dynamics", 
      "temperature", 
      "transport", 
      "profile", 
      "potential", 
      "structure", 
      "shape", 
      "possibility", 
      "latter", 
      "function", 
      "instances", 
      "influence", 
      "behavior", 
      "features", 
      "method", 
      "control"
    ], 
    "name": "The Influence of Electrostatic Lenses on Wave Packet Dynamics", 
    "pagination": "277-284", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018438524"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-26520-9_30"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-26520-9_30", 
      "https://app.dimensions.ai/details/publication/pub.1018438524"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_332.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-26520-9_30"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_30'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_30'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_30'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_30'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      23 PREDICATES      73 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-26520-9_30 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N7ee8dec815e44f28907df6003be03fdc
4 schema:datePublished 2015-11-29
5 schema:datePublishedReg 2015-11-29
6 schema:description The control of coherent electrons is becoming relevant in emerging devices as (semi-)ballistic transport is observed within nanometer semiconductor structures at room temperature. The evolution of a wave packet – representing an electron in a semiconductor – can be manipulated using specially shaped potential profiles with convex or concave features, similar to refractive lenses used in optics. Such electrostatic lenses offer the possibility, for instance, to concentrate a single wave packet which has been invoked by a laser pulse, or split it up into several wave packets. Moreover, the shape of the potential profile can be dynamically changed by an externally applied potential, depending on the desired behaviour. The evolution of a wave packet under the influence of a two-dimensional potential – the electrostatic lens – is investigated by computing the physical densities using the Wigner function. The latter is obtained by using the signed-particle Wigner Monte Carlo method.
7 schema:editor N9bf7eaa22a7e4b96a06be8ddd3f57759
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ndad8763b9c1b4c0faa598859973cf94d
12 schema:keywords Carlo method
13 Monte Carlo method
14 Wigner Monte Carlo method
15 Wigner function
16 applied potential
17 behavior
18 coherent electron
19 concave features
20 control
21 convex
22 density
23 devices
24 dynamics
25 electrons
26 electrostatic lens
27 electrostatic lenses
28 evolution
29 features
30 function
31 influence
32 instances
33 laser pulses
34 latter
35 lens
36 lenses
37 method
38 optics
39 packet dynamics
40 packets
41 physical density
42 possibility
43 potential
44 potential profile
45 profile
46 pulses
47 refractive lenses
48 room temperature
49 semiconductor structures
50 semiconductors
51 shape
52 single wave packet
53 structure
54 temperature
55 transport
56 two-dimensional potential
57 wave packet dynamics
58 wave packets
59 waves
60 schema:name The Influence of Electrostatic Lenses on Wave Packet Dynamics
61 schema:pagination 277-284
62 schema:productId N92129ba6fad14d549bdbc5e5b23a4e60
63 Nd6c489e100454f63a6f2e32fa61bca45
64 schema:publisher N3ccb5ff787de48f5a1ec1d5f4cf79118
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018438524
66 https://doi.org/10.1007/978-3-319-26520-9_30
67 schema:sdDatePublished 2022-05-10T10:47
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N82eb7c9bc610484cadcee7611be5e1f6
70 schema:url https://doi.org/10.1007/978-3-319-26520-9_30
71 sgo:license sg:explorer/license/
72 sgo:sdDataset chapters
73 rdf:type schema:Chapter
74 N069f769e98c245fca0ef5b7a742bd500 rdf:first sg:person.013033344117.92
75 rdf:rest rdf:nil
76 N17727642113340d5ac4519991b3397b1 rdf:first sg:person.011142023427.48
77 rdf:rest N069f769e98c245fca0ef5b7a742bd500
78 N3ccb5ff787de48f5a1ec1d5f4cf79118 schema:name Springer Nature
79 rdf:type schema:Organisation
80 N64d53f4ca8354052b5e1cb8331569681 rdf:first N87122a4d510a4bc29e578e72abb52192
81 rdf:rest rdf:nil
82 N72f1b717682944cfa2a762946ea64535 schema:familyName Lirkov
83 schema:givenName Ivan
84 rdf:type schema:Person
85 N7ee8dec815e44f28907df6003be03fdc rdf:first sg:person.016442755635.85
86 rdf:rest N17727642113340d5ac4519991b3397b1
87 N80334bea23374c029af86b909117ba55 rdf:first Nc2522569429a4600bd8d7402dffc8235
88 rdf:rest N64d53f4ca8354052b5e1cb8331569681
89 N82eb7c9bc610484cadcee7611be5e1f6 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N87122a4d510a4bc29e578e72abb52192 schema:familyName Waśniewski
92 schema:givenName Jerzy
93 rdf:type schema:Person
94 N92129ba6fad14d549bdbc5e5b23a4e60 schema:name doi
95 schema:value 10.1007/978-3-319-26520-9_30
96 rdf:type schema:PropertyValue
97 N9bf7eaa22a7e4b96a06be8ddd3f57759 rdf:first N72f1b717682944cfa2a762946ea64535
98 rdf:rest N80334bea23374c029af86b909117ba55
99 Nc2522569429a4600bd8d7402dffc8235 schema:familyName Margenov
100 schema:givenName Svetozar D.
101 rdf:type schema:Person
102 Nd6c489e100454f63a6f2e32fa61bca45 schema:name dimensions_id
103 schema:value pub.1018438524
104 rdf:type schema:PropertyValue
105 Ndad8763b9c1b4c0faa598859973cf94d schema:isbn 978-3-319-26519-3
106 978-3-319-26520-9
107 schema:name Large-Scale Scientific Computing
108 rdf:type schema:Book
109 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
110 schema:name Physical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
113 schema:name Other Physical Sciences
114 rdf:type schema:DefinedTerm
115 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
116 schema:familyName Nedjalkov
117 schema:givenName Mihail
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
119 rdf:type schema:Person
120 sg:person.013033344117.92 schema:affiliation grid-institutes:grid.5329.d
121 schema:familyName Selberherr
122 schema:givenName Siegfried
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033344117.92
124 rdf:type schema:Person
125 sg:person.016442755635.85 schema:affiliation grid-institutes:grid.5329.d
126 schema:familyName Ellinghaus
127 schema:givenName Paul
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442755635.85
129 rdf:type schema:Person
130 grid-institutes:grid.5329.d schema:alternateName Institute for Microelectronics, TU Wien, Vienna, Austria
131 schema:name Institute for Microelectronics, TU Wien, Vienna, Austria
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...