Optimization of the Deterministic Solution of the Discrete Wigner Equation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-11-29

AUTHORS

Johann Cervenka , Paul Ellinghaus , Mihail Nedjalkov , Erasmus Langer

ABSTRACT

The development of novel nanoelectronic devices requires methods capable to simulate quantum-mechanical effects in the carrier transport processes. We present a deterministic method based on an integral formulation of the Wigner equation, which considers the evolution of an initial condition as the superposition of the propagation of particular fundamental contributions.Major considerations are necessary, to overcome the memory and time demands typical for any quantum transport method. An advantage of our method is that it is perfectly suited for parallelization due to the independence of each fundamental contribution. Furthermore, a dramatic speed-up of the simulations has been achieved due to a preconditioning of the resulting equation system.To evaluate this deterministic approach, the simulation of a Resonant Tunneling Diode, will be shown. More... »

PAGES

269-276

Book

TITLE

Large-Scale Scientific Computing

ISBN

978-3-319-26519-3
978-3-319-26520-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_29

DOI

http://dx.doi.org/10.1007/978-3-319-26520-9_29

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084707155


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cervenka", 
        "givenName": "Johann", 
        "id": "sg:person.013177467135.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013177467135.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ellinghaus", 
        "givenName": "Paul", 
        "id": "sg:person.016442755635.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442755635.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nedjalkov", 
        "givenName": "Mihail", 
        "id": "sg:person.011142023427.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Microelectronics, TU Wien, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Microelectronics, TU Wien, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langer", 
        "givenName": "Erasmus", 
        "id": "sg:person.012300065522.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012300065522.19"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-11-29", 
    "datePublishedReg": "2015-11-29", 
    "description": "The development of novel nanoelectronic devices requires methods capable to simulate quantum-mechanical effects in the carrier transport processes. We present a deterministic method based on an integral formulation of the Wigner equation, which considers the evolution of an initial condition as the superposition of the propagation of particular fundamental contributions.Major considerations are necessary, to overcome the memory and time demands typical for any quantum transport method. An advantage of our method is that it is perfectly suited for parallelization due to the independence of each fundamental contribution. Furthermore, a dramatic speed-up of the simulations has been achieved due to a preconditioning of the resulting equation system.To evaluate this deterministic approach, the simulation of a Resonant Tunneling Diode, will be shown.", 
    "editor": [
      {
        "familyName": "Lirkov", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "familyName": "Margenov", 
        "givenName": "Svetozar D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Wa\u015bniewski", 
        "givenName": "Jerzy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-26520-9_29", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-26519-3", 
        "978-3-319-26520-9"
      ], 
      "name": "Large-Scale Scientific Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "Wigner equation", 
      "quantum mechanical effects", 
      "equation system", 
      "deterministic solution", 
      "integral formulation", 
      "deterministic methods", 
      "initial conditions", 
      "novel nanoelectronic devices", 
      "fundamental contribution", 
      "deterministic approach", 
      "resonant tunneling diodes", 
      "carrier transport process", 
      "equations", 
      "transport method", 
      "nanoelectronic devices", 
      "tunneling diodes", 
      "simulations", 
      "transport processes", 
      "optimization", 
      "superposition", 
      "propagation", 
      "parallelization", 
      "formulation", 
      "diodes", 
      "solution", 
      "time demands", 
      "devices", 
      "approach", 
      "system", 
      "contribution", 
      "evolution", 
      "preconditioning", 
      "advantages", 
      "consideration", 
      "method", 
      "conditions", 
      "independence", 
      "process", 
      "major consideration", 
      "demand", 
      "effect", 
      "memory", 
      "development"
    ], 
    "name": "Optimization of the Deterministic Solution of the Discrete Wigner Equation", 
    "pagination": "269-276", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084707155"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-26520-9_29"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-26520-9_29", 
      "https://app.dimensions.ai/details/publication/pub.1084707155"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_156.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-26520-9_29"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_29'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_29'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_29'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_29'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      23 PREDICATES      68 URIs      61 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-26520-9_29 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N53979edf54ce4ae3ba6e060021ed6525
4 schema:datePublished 2015-11-29
5 schema:datePublishedReg 2015-11-29
6 schema:description The development of novel nanoelectronic devices requires methods capable to simulate quantum-mechanical effects in the carrier transport processes. We present a deterministic method based on an integral formulation of the Wigner equation, which considers the evolution of an initial condition as the superposition of the propagation of particular fundamental contributions.Major considerations are necessary, to overcome the memory and time demands typical for any quantum transport method. An advantage of our method is that it is perfectly suited for parallelization due to the independence of each fundamental contribution. Furthermore, a dramatic speed-up of the simulations has been achieved due to a preconditioning of the resulting equation system.To evaluate this deterministic approach, the simulation of a Resonant Tunneling Diode, will be shown.
7 schema:editor N74169f34598946b9a39b724bc1c39a51
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N21a790e9b0b34f5d85f6a1808c1a7a60
12 schema:keywords Wigner equation
13 advantages
14 approach
15 carrier transport process
16 conditions
17 consideration
18 contribution
19 demand
20 deterministic approach
21 deterministic methods
22 deterministic solution
23 development
24 devices
25 diodes
26 effect
27 equation system
28 equations
29 evolution
30 formulation
31 fundamental contribution
32 independence
33 initial conditions
34 integral formulation
35 major consideration
36 memory
37 method
38 nanoelectronic devices
39 novel nanoelectronic devices
40 optimization
41 parallelization
42 preconditioning
43 process
44 propagation
45 quantum mechanical effects
46 resonant tunneling diodes
47 simulations
48 solution
49 superposition
50 system
51 time demands
52 transport method
53 transport processes
54 tunneling diodes
55 schema:name Optimization of the Deterministic Solution of the Discrete Wigner Equation
56 schema:pagination 269-276
57 schema:productId N8c2d95d7846d40f48fb1a9bfd32cdd29
58 N9b7403da087d4086b35666f567864423
59 schema:publisher N0373ed0328f0490a8f3d66f4617a7b8f
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084707155
61 https://doi.org/10.1007/978-3-319-26520-9_29
62 schema:sdDatePublished 2022-05-20T07:42
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nc15477cccdf6402b8bfe7d9b84c0be10
65 schema:url https://doi.org/10.1007/978-3-319-26520-9_29
66 sgo:license sg:explorer/license/
67 sgo:sdDataset chapters
68 rdf:type schema:Chapter
69 N0373ed0328f0490a8f3d66f4617a7b8f schema:name Springer Nature
70 rdf:type schema:Organisation
71 N1272888e1d7843a4b45d243baa14dee0 rdf:first sg:person.012300065522.19
72 rdf:rest rdf:nil
73 N21a790e9b0b34f5d85f6a1808c1a7a60 schema:isbn 978-3-319-26519-3
74 978-3-319-26520-9
75 schema:name Large-Scale Scientific Computing
76 rdf:type schema:Book
77 N53979edf54ce4ae3ba6e060021ed6525 rdf:first sg:person.013177467135.33
78 rdf:rest N66739a8d532c47e283f8289c155f9f87
79 N66739a8d532c47e283f8289c155f9f87 rdf:first sg:person.016442755635.85
80 rdf:rest Na7c846c8901c478cb65709b9f833847a
81 N6a7db431a77a44feaea0bfc9d5c81dc7 rdf:first N7650db691cdb450d8a8febf87fc7e04c
82 rdf:rest rdf:nil
83 N74169f34598946b9a39b724bc1c39a51 rdf:first N8a536aa677e548579ff80ab6efb46d40
84 rdf:rest Na23187fe3c204b39998463132b88294b
85 N7650db691cdb450d8a8febf87fc7e04c schema:familyName Waśniewski
86 schema:givenName Jerzy
87 rdf:type schema:Person
88 N8a536aa677e548579ff80ab6efb46d40 schema:familyName Lirkov
89 schema:givenName Ivan
90 rdf:type schema:Person
91 N8c2d95d7846d40f48fb1a9bfd32cdd29 schema:name doi
92 schema:value 10.1007/978-3-319-26520-9_29
93 rdf:type schema:PropertyValue
94 N9b7403da087d4086b35666f567864423 schema:name dimensions_id
95 schema:value pub.1084707155
96 rdf:type schema:PropertyValue
97 Na23187fe3c204b39998463132b88294b rdf:first Nf57ba6b10a204044a8d667e1cb080f95
98 rdf:rest N6a7db431a77a44feaea0bfc9d5c81dc7
99 Na7c846c8901c478cb65709b9f833847a rdf:first sg:person.011142023427.48
100 rdf:rest N1272888e1d7843a4b45d243baa14dee0
101 Nc15477cccdf6402b8bfe7d9b84c0be10 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nf57ba6b10a204044a8d667e1cb080f95 schema:familyName Margenov
104 schema:givenName Svetozar D.
105 rdf:type schema:Person
106 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
110 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
111 rdf:type schema:DefinedTerm
112 sg:person.011142023427.48 schema:affiliation grid-institutes:grid.5329.d
113 schema:familyName Nedjalkov
114 schema:givenName Mihail
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011142023427.48
116 rdf:type schema:Person
117 sg:person.012300065522.19 schema:affiliation grid-institutes:grid.5329.d
118 schema:familyName Langer
119 schema:givenName Erasmus
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012300065522.19
121 rdf:type schema:Person
122 sg:person.013177467135.33 schema:affiliation grid-institutes:grid.5329.d
123 schema:familyName Cervenka
124 schema:givenName Johann
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013177467135.33
126 rdf:type schema:Person
127 sg:person.016442755635.85 schema:affiliation grid-institutes:grid.5329.d
128 schema:familyName Ellinghaus
129 schema:givenName Paul
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016442755635.85
131 rdf:type schema:Person
132 grid-institutes:grid.5329.d schema:alternateName Institute for Microelectronics, TU Wien, Vienna, Austria
133 schema:name Institute for Microelectronics, TU Wien, Vienna, Austria
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...