2015-11-29
AUTHORSStefka Fidanova , Zlatolilya Ilcheva
ABSTRACTThe aim of the image edge detection is to find the points, in a digital image, at which the brightness level changes sharply. Normally they are curved lines called edges. Edge detection is a fundamental tool in image processing, machine vision and computer vision, particularly in the areas of feature detection and feature extraction. Edge detection may lead to finding the boundaries of objects. It is one of the fundamental steps in image analysis. Edge detection is a hard computational problem. In this paper we apply a multiagent system. The idea comes from ant colony optimization. We use the swarm intelligence of the ants to search the image edges. More... »
PAGES218-225
Large-Scale Scientific Computing
ISBN
978-3-319-26519-3
978-3-319-26520-9
http://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_23
DOIhttp://dx.doi.org/10.1007/978-3-319-26520-9_23
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1038990846
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl25A, 1113, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.424988.b",
"name": [
"Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl25A, 1113, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Fidanova",
"givenName": "Stefka",
"id": "sg:person.011173106320.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl25A, 1113, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.424988.b",
"name": [
"Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl25A, 1113, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Ilcheva",
"givenName": "Zlatolilya",
"type": "Person"
}
],
"datePublished": "2015-11-29",
"datePublishedReg": "2015-11-29",
"description": "The aim of the image edge detection is to find the points, in a digital image, at which the brightness level changes sharply. Normally they are curved lines called edges. Edge detection is a fundamental tool in image processing, machine vision and computer vision, particularly in the areas of feature detection and feature extraction. Edge detection may lead to finding the boundaries of objects. It is one of the fundamental steps in image analysis. Edge detection is a hard computational problem. In this paper we apply a multiagent system. The idea comes from ant colony optimization. We use the swarm intelligence of the ants to search the image edges.",
"editor": [
{
"familyName": "Lirkov",
"givenName": "Ivan",
"type": "Person"
},
{
"familyName": "Margenov",
"givenName": "Svetozar D.",
"type": "Person"
},
{
"familyName": "Wa\u015bniewski",
"givenName": "Jerzy",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-26520-9_23",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-26519-3",
"978-3-319-26520-9"
],
"name": "Large-Scale Scientific Computing",
"type": "Book"
},
"keywords": [
"image edge detection",
"edge detection",
"hard computational problems",
"boundaries of objects",
"Ant Colony Optimization",
"computer vision",
"machine vision",
"swarm intelligence",
"feature extraction",
"feature detection",
"image processing",
"multiagent systems",
"computational problems",
"digital images",
"colony optimization",
"image edges",
"image analysis",
"fundamental step",
"fundamental tool",
"vision",
"detection",
"intelligence",
"images",
"objects",
"idea",
"processing",
"optimization",
"edge",
"tool",
"applications",
"extraction",
"system",
"step",
"ants",
"point",
"area",
"boundaries",
"analysis",
"lines",
"aim",
"changes",
"level changes",
"paper",
"problem"
],
"name": "Application of Ants Ideas on Image Edge Detection",
"pagination": "218-225",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1038990846"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-26520-9_23"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-26520-9_23",
"https://app.dimensions.ai/details/publication/pub.1038990846"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_318.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-26520-9_23"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_23'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_23'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_23'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_23'
This table displays all metadata directly associated to this object as RDF triples.
120 TRIPLES
23 PREDICATES
69 URIs
62 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-26520-9_23 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | Nc2f0880d0e1b48e9b373f188fa3c7253 |
4 | ″ | schema:datePublished | 2015-11-29 |
5 | ″ | schema:datePublishedReg | 2015-11-29 |
6 | ″ | schema:description | The aim of the image edge detection is to find the points, in a digital image, at which the brightness level changes sharply. Normally they are curved lines called edges. Edge detection is a fundamental tool in image processing, machine vision and computer vision, particularly in the areas of feature detection and feature extraction. Edge detection may lead to finding the boundaries of objects. It is one of the fundamental steps in image analysis. Edge detection is a hard computational problem. In this paper we apply a multiagent system. The idea comes from ant colony optimization. We use the swarm intelligence of the ants to search the image edges. |
7 | ″ | schema:editor | Ne96b4e4d65ed4c27967a24e0efa7b709 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N37dc4e68b6ea451c9e4d8a0dd1cfd34e |
12 | ″ | schema:keywords | Ant Colony Optimization |
13 | ″ | ″ | aim |
14 | ″ | ″ | analysis |
15 | ″ | ″ | ants |
16 | ″ | ″ | applications |
17 | ″ | ″ | area |
18 | ″ | ″ | boundaries |
19 | ″ | ″ | boundaries of objects |
20 | ″ | ″ | changes |
21 | ″ | ″ | colony optimization |
22 | ″ | ″ | computational problems |
23 | ″ | ″ | computer vision |
24 | ″ | ″ | detection |
25 | ″ | ″ | digital images |
26 | ″ | ″ | edge |
27 | ″ | ″ | edge detection |
28 | ″ | ″ | extraction |
29 | ″ | ″ | feature detection |
30 | ″ | ″ | feature extraction |
31 | ″ | ″ | fundamental step |
32 | ″ | ″ | fundamental tool |
33 | ″ | ″ | hard computational problems |
34 | ″ | ″ | idea |
35 | ″ | ″ | image analysis |
36 | ″ | ″ | image edge detection |
37 | ″ | ″ | image edges |
38 | ″ | ″ | image processing |
39 | ″ | ″ | images |
40 | ″ | ″ | intelligence |
41 | ″ | ″ | level changes |
42 | ″ | ″ | lines |
43 | ″ | ″ | machine vision |
44 | ″ | ″ | multiagent systems |
45 | ″ | ″ | objects |
46 | ″ | ″ | optimization |
47 | ″ | ″ | paper |
48 | ″ | ″ | point |
49 | ″ | ″ | problem |
50 | ″ | ″ | processing |
51 | ″ | ″ | step |
52 | ″ | ″ | swarm intelligence |
53 | ″ | ″ | system |
54 | ″ | ″ | tool |
55 | ″ | ″ | vision |
56 | ″ | schema:name | Application of Ants Ideas on Image Edge Detection |
57 | ″ | schema:pagination | 218-225 |
58 | ″ | schema:productId | N74d81f1e7c4d400795a2a49f3e97d541 |
59 | ″ | ″ | Nf3c58b53654b41e988d65eecdf362ed9 |
60 | ″ | schema:publisher | N3b2284ea4a7a41ea930268d201026f71 |
61 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038990846 |
62 | ″ | ″ | https://doi.org/10.1007/978-3-319-26520-9_23 |
63 | ″ | schema:sdDatePublished | 2022-05-10T10:47 |
64 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
65 | ″ | schema:sdPublisher | Nda0fce6dc1d24cc5a6c28cb1917d8b99 |
66 | ″ | schema:url | https://doi.org/10.1007/978-3-319-26520-9_23 |
67 | ″ | sgo:license | sg:explorer/license/ |
68 | ″ | sgo:sdDataset | chapters |
69 | ″ | rdf:type | schema:Chapter |
70 | N37dc4e68b6ea451c9e4d8a0dd1cfd34e | schema:isbn | 978-3-319-26519-3 |
71 | ″ | ″ | 978-3-319-26520-9 |
72 | ″ | schema:name | Large-Scale Scientific Computing |
73 | ″ | rdf:type | schema:Book |
74 | N3b2284ea4a7a41ea930268d201026f71 | schema:name | Springer Nature |
75 | ″ | rdf:type | schema:Organisation |
76 | N61bbba0c24c844ecbc0e791f6dc66e00 | rdf:first | N69ad8c18a1864d9baeb711aaed6a2a76 |
77 | ″ | rdf:rest | rdf:nil |
78 | N69ad8c18a1864d9baeb711aaed6a2a76 | schema:affiliation | grid-institutes:grid.424988.b |
79 | ″ | schema:familyName | Ilcheva |
80 | ″ | schema:givenName | Zlatolilya |
81 | ″ | rdf:type | schema:Person |
82 | N6a2aa6f34cbb4d27b4184387f0268cdb | rdf:first | Nd08713ec40d5457b815c7a3f3d644716 |
83 | ″ | rdf:rest | Na6ca54c5d9a845d79fdbfcc551acd9dc |
84 | N74d81f1e7c4d400795a2a49f3e97d541 | schema:name | doi |
85 | ″ | schema:value | 10.1007/978-3-319-26520-9_23 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | Na6ca54c5d9a845d79fdbfcc551acd9dc | rdf:first | Nfe91e4730b1b475ea01b5e821538d2d1 |
88 | ″ | rdf:rest | rdf:nil |
89 | Na9c0f51e5dac48e1b218c77a2da75937 | schema:familyName | Lirkov |
90 | ″ | schema:givenName | Ivan |
91 | ″ | rdf:type | schema:Person |
92 | Nc2f0880d0e1b48e9b373f188fa3c7253 | rdf:first | sg:person.011173106320.18 |
93 | ″ | rdf:rest | N61bbba0c24c844ecbc0e791f6dc66e00 |
94 | Nd08713ec40d5457b815c7a3f3d644716 | schema:familyName | Margenov |
95 | ″ | schema:givenName | Svetozar D. |
96 | ″ | rdf:type | schema:Person |
97 | Nda0fce6dc1d24cc5a6c28cb1917d8b99 | schema:name | Springer Nature - SN SciGraph project |
98 | ″ | rdf:type | schema:Organization |
99 | Ne96b4e4d65ed4c27967a24e0efa7b709 | rdf:first | Na9c0f51e5dac48e1b218c77a2da75937 |
100 | ″ | rdf:rest | N6a2aa6f34cbb4d27b4184387f0268cdb |
101 | Nf3c58b53654b41e988d65eecdf362ed9 | schema:name | dimensions_id |
102 | ″ | schema:value | pub.1038990846 |
103 | ″ | rdf:type | schema:PropertyValue |
104 | Nfe91e4730b1b475ea01b5e821538d2d1 | schema:familyName | Waśniewski |
105 | ″ | schema:givenName | Jerzy |
106 | ″ | rdf:type | schema:Person |
107 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Information and Computing Sciences |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Artificial Intelligence and Image Processing |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | sg:person.011173106320.18 | schema:affiliation | grid-institutes:grid.424988.b |
114 | ″ | schema:familyName | Fidanova |
115 | ″ | schema:givenName | Stefka |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18 |
117 | ″ | rdf:type | schema:Person |
118 | grid-institutes:grid.424988.b | schema:alternateName | Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl25A, 1113, Sofia, Bulgaria |
119 | ″ | schema:name | Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl25A, 1113, Sofia, Bulgaria |
120 | ″ | rdf:type | schema:Organization |