Application of Ants Ideas on Image Edge Detection View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-11-29

AUTHORS

Stefka Fidanova , Zlatolilya Ilcheva

ABSTRACT

The aim of the image edge detection is to find the points, in a digital image, at which the brightness level changes sharply. Normally they are curved lines called edges. Edge detection is a fundamental tool in image processing, machine vision and computer vision, particularly in the areas of feature detection and feature extraction. Edge detection may lead to finding the boundaries of objects. It is one of the fundamental steps in image analysis. Edge detection is a hard computational problem. In this paper we apply a multiagent system. The idea comes from ant colony optimization. We use the swarm intelligence of the ants to search the image edges. More... »

PAGES

218-225

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_23

DOI

http://dx.doi.org/10.1007/978-3-319-26520-9_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038990846


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl25A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl25A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "id": "sg:person.011173106320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl25A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424988.b", 
          "name": [
            "Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl25A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ilcheva", 
        "givenName": "Zlatolilya", 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-11-29", 
    "datePublishedReg": "2015-11-29", 
    "description": "The aim of the image edge detection is to find the points, in a digital image, at which the brightness level changes sharply. Normally they are curved lines called edges. Edge detection is a fundamental tool in image processing, machine vision and computer vision, particularly in the areas of feature detection and feature extraction. Edge detection may lead to finding the boundaries of objects. It is one of the fundamental steps in image analysis. Edge detection is a hard computational problem. In this paper we apply a multiagent system. The idea comes from ant colony optimization. We use the swarm intelligence of the ants to search the image edges.", 
    "editor": [
      {
        "familyName": "Lirkov", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "familyName": "Margenov", 
        "givenName": "Svetozar D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Wa\u015bniewski", 
        "givenName": "Jerzy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-26520-9_23", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-26519-3", 
        "978-3-319-26520-9"
      ], 
      "name": "Large-Scale Scientific Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "image edge detection", 
      "edge detection", 
      "hard computational problems", 
      "boundaries of objects", 
      "Ant Colony Optimization", 
      "computer vision", 
      "machine vision", 
      "swarm intelligence", 
      "feature extraction", 
      "feature detection", 
      "image processing", 
      "multiagent systems", 
      "computational problems", 
      "digital images", 
      "colony optimization", 
      "image edges", 
      "image analysis", 
      "fundamental step", 
      "fundamental tool", 
      "vision", 
      "detection", 
      "intelligence", 
      "images", 
      "objects", 
      "idea", 
      "processing", 
      "optimization", 
      "edge", 
      "tool", 
      "applications", 
      "extraction", 
      "system", 
      "step", 
      "ants", 
      "point", 
      "area", 
      "boundaries", 
      "analysis", 
      "lines", 
      "aim", 
      "changes", 
      "level changes", 
      "paper", 
      "problem"
    ], 
    "name": "Application of Ants Ideas on Image Edge Detection", 
    "pagination": "218-225", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038990846"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-26520-9_23"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-26520-9_23", 
      "https://app.dimensions.ai/details/publication/pub.1038990846"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_318.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-26520-9_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26520-9_23'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      23 PREDICATES      69 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-26520-9_23 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nc2f0880d0e1b48e9b373f188fa3c7253
4 schema:datePublished 2015-11-29
5 schema:datePublishedReg 2015-11-29
6 schema:description The aim of the image edge detection is to find the points, in a digital image, at which the brightness level changes sharply. Normally they are curved lines called edges. Edge detection is a fundamental tool in image processing, machine vision and computer vision, particularly in the areas of feature detection and feature extraction. Edge detection may lead to finding the boundaries of objects. It is one of the fundamental steps in image analysis. Edge detection is a hard computational problem. In this paper we apply a multiagent system. The idea comes from ant colony optimization. We use the swarm intelligence of the ants to search the image edges.
7 schema:editor Ne96b4e4d65ed4c27967a24e0efa7b709
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N37dc4e68b6ea451c9e4d8a0dd1cfd34e
12 schema:keywords Ant Colony Optimization
13 aim
14 analysis
15 ants
16 applications
17 area
18 boundaries
19 boundaries of objects
20 changes
21 colony optimization
22 computational problems
23 computer vision
24 detection
25 digital images
26 edge
27 edge detection
28 extraction
29 feature detection
30 feature extraction
31 fundamental step
32 fundamental tool
33 hard computational problems
34 idea
35 image analysis
36 image edge detection
37 image edges
38 image processing
39 images
40 intelligence
41 level changes
42 lines
43 machine vision
44 multiagent systems
45 objects
46 optimization
47 paper
48 point
49 problem
50 processing
51 step
52 swarm intelligence
53 system
54 tool
55 vision
56 schema:name Application of Ants Ideas on Image Edge Detection
57 schema:pagination 218-225
58 schema:productId N74d81f1e7c4d400795a2a49f3e97d541
59 Nf3c58b53654b41e988d65eecdf362ed9
60 schema:publisher N3b2284ea4a7a41ea930268d201026f71
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038990846
62 https://doi.org/10.1007/978-3-319-26520-9_23
63 schema:sdDatePublished 2022-05-10T10:47
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nda0fce6dc1d24cc5a6c28cb1917d8b99
66 schema:url https://doi.org/10.1007/978-3-319-26520-9_23
67 sgo:license sg:explorer/license/
68 sgo:sdDataset chapters
69 rdf:type schema:Chapter
70 N37dc4e68b6ea451c9e4d8a0dd1cfd34e schema:isbn 978-3-319-26519-3
71 978-3-319-26520-9
72 schema:name Large-Scale Scientific Computing
73 rdf:type schema:Book
74 N3b2284ea4a7a41ea930268d201026f71 schema:name Springer Nature
75 rdf:type schema:Organisation
76 N61bbba0c24c844ecbc0e791f6dc66e00 rdf:first N69ad8c18a1864d9baeb711aaed6a2a76
77 rdf:rest rdf:nil
78 N69ad8c18a1864d9baeb711aaed6a2a76 schema:affiliation grid-institutes:grid.424988.b
79 schema:familyName Ilcheva
80 schema:givenName Zlatolilya
81 rdf:type schema:Person
82 N6a2aa6f34cbb4d27b4184387f0268cdb rdf:first Nd08713ec40d5457b815c7a3f3d644716
83 rdf:rest Na6ca54c5d9a845d79fdbfcc551acd9dc
84 N74d81f1e7c4d400795a2a49f3e97d541 schema:name doi
85 schema:value 10.1007/978-3-319-26520-9_23
86 rdf:type schema:PropertyValue
87 Na6ca54c5d9a845d79fdbfcc551acd9dc rdf:first Nfe91e4730b1b475ea01b5e821538d2d1
88 rdf:rest rdf:nil
89 Na9c0f51e5dac48e1b218c77a2da75937 schema:familyName Lirkov
90 schema:givenName Ivan
91 rdf:type schema:Person
92 Nc2f0880d0e1b48e9b373f188fa3c7253 rdf:first sg:person.011173106320.18
93 rdf:rest N61bbba0c24c844ecbc0e791f6dc66e00
94 Nd08713ec40d5457b815c7a3f3d644716 schema:familyName Margenov
95 schema:givenName Svetozar D.
96 rdf:type schema:Person
97 Nda0fce6dc1d24cc5a6c28cb1917d8b99 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Ne96b4e4d65ed4c27967a24e0efa7b709 rdf:first Na9c0f51e5dac48e1b218c77a2da75937
100 rdf:rest N6a2aa6f34cbb4d27b4184387f0268cdb
101 Nf3c58b53654b41e988d65eecdf362ed9 schema:name dimensions_id
102 schema:value pub.1038990846
103 rdf:type schema:PropertyValue
104 Nfe91e4730b1b475ea01b5e821538d2d1 schema:familyName Waśniewski
105 schema:givenName Jerzy
106 rdf:type schema:Person
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
111 schema:name Artificial Intelligence and Image Processing
112 rdf:type schema:DefinedTerm
113 sg:person.011173106320.18 schema:affiliation grid-institutes:grid.424988.b
114 schema:familyName Fidanova
115 schema:givenName Stefka
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18
117 rdf:type schema:Person
118 grid-institutes:grid.424988.b schema:alternateName Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl25A, 1113, Sofia, Bulgaria
119 schema:name Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl25A, 1113, Sofia, Bulgaria
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...