Discovering BPMN Models with Sub-processes and Multi-instance Markers View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-10-28

AUTHORS

Yuquan Wang , Lijie Wen , Zhiqiang Yan , Bo Sun , Jianmin Wang

ABSTRACT

Massive event logs are produced in information systems, which record executions of business processes in organizations. Various techniques are proposed to discover process models reflecting real-life behaviors from these logs. However, the discovered models are mostly in Petri nets rather than BPMN models, the current industrial process modeling standard. Conforti et al. and Weber et al. propose techniques that discover BPMN models with sub-processes, multi-instance, etc. However, these techniques are made for event logs with special attributes, e.g., containing attributes about primary and foreign keys, which may not commonly appear in event logs. For example, logs from the OA (office automation) systems of CMCC (China Mobile Communications Corporation) do not contain such data. To solve this issue, this paper proposes two techniques that can discover BPMN models with sub-processes and multi-instance markers with event logs containing less event attributes. One of our techniques only requires four event attributes: case id, task name, start time and end time. Experimental evaluations with both real-life logs and synthetic logs show that our techniques can indeed discover process models with sub-process and multi-instance markers from logs with less event attributes, and are more accurate and less complex than those derived with flat process model discovery techniques. More... »

PAGES

185-201

Book

TITLE

On the Move to Meaningful Internet Systems: OTM 2015 Conferences

ISBN

978-3-319-26147-8
978-3-319-26148-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-26148-5_11

DOI

http://dx.doi.org/10.1007/978-3-319-26148-5_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008465646


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yuquan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "Lijie", 
        "id": "sg:person.013640554311.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Information, Capital University of Economics and Business, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.411923.c", 
          "name": [
            "School of Information, Capital University of Economics and Business, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Zhiqiang", 
        "id": "sg:person.010652652311.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010652652311.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Bo", 
        "id": "sg:person.012027116460.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012027116460.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Software, Tsinghua University, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "School of Software, Tsinghua University, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jianmin", 
        "id": "sg:person.012303351315.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-10-28", 
    "datePublishedReg": "2015-10-28", 
    "description": "Massive event logs are produced in information systems, which record executions of business processes in organizations. Various techniques are proposed to discover process models reflecting real-life behaviors from these logs. However, the discovered models are mostly in Petri nets rather than BPMN models, the current industrial process modeling standard. Conforti et al. and Weber et al. propose techniques that discover BPMN models with sub-processes, multi-instance, etc. However, these techniques are made for event logs with special attributes, e.g., containing attributes about primary and foreign keys, which may not commonly appear in event logs. For example, logs from the OA (office automation) systems of CMCC (China Mobile Communications Corporation) do not contain such data. To solve this issue, this paper proposes two techniques that can discover BPMN models with sub-processes and multi-instance markers with event logs containing less event attributes. One of our techniques only requires four event attributes: case id, task name, start time and end time. Experimental evaluations with both real-life logs and synthetic logs show that our techniques can indeed discover process models with sub-process and multi-instance markers from logs with less event attributes, and are more accurate and less complex than those derived with flat process model discovery techniques.", 
    "editor": [
      {
        "familyName": "Debruyne", 
        "givenName": "Christophe", 
        "type": "Person"
      }, 
      {
        "familyName": "Panetto", 
        "givenName": "Herv\u00e9", 
        "type": "Person"
      }, 
      {
        "familyName": "Meersman", 
        "givenName": "Robert", 
        "type": "Person"
      }, 
      {
        "familyName": "Dillon", 
        "givenName": "Tharam", 
        "type": "Person"
      }, 
      {
        "familyName": "Weichhart", 
        "givenName": "Georg", 
        "type": "Person"
      }, 
      {
        "familyName": "An", 
        "givenName": "Yuan", 
        "type": "Person"
      }, 
      {
        "familyName": "Ardagna", 
        "givenName": "Claudio Agostino", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-26148-5_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-26147-8", 
        "978-3-319-26148-5"
      ], 
      "name": "On the Move to Meaningful Internet Systems: OTM 2015 Conferences", 
      "type": "Book"
    }, 
    "keywords": [
      "event logs", 
      "BPMN models", 
      "event attributes", 
      "real-life logs", 
      "case id", 
      "process model", 
      "business processes", 
      "discovery techniques", 
      "foreign keys", 
      "OA system", 
      "propose techniques", 
      "information systems", 
      "Petri nets", 
      "experimental evaluation", 
      "synthetic logs", 
      "task names", 
      "real-life behavior", 
      "such data", 
      "end time", 
      "attributes", 
      "log", 
      "special attributes", 
      "execution", 
      "technique", 
      "system", 
      "industrial processes", 
      "nets", 
      "model", 
      "key", 
      "CMCC", 
      "Weber et al", 
      "current industrial processes", 
      "issues", 
      "example", 
      "process", 
      "time", 
      "standards", 
      "organization", 
      "et al", 
      "data", 
      "name", 
      "evaluation", 
      "behavior", 
      "al", 
      "markers", 
      "paper", 
      "Massive event logs", 
      "multi-instance markers", 
      "less event attributes", 
      "id", 
      "flat process model discovery techniques", 
      "process model discovery techniques", 
      "model discovery techniques"
    ], 
    "name": "Discovering BPMN Models with Sub-processes and Multi-instance Markers", 
    "pagination": "185-201", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008465646"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-26148-5_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-26148-5_11", 
      "https://app.dimensions.ai/details/publication/pub.1008465646"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_399.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-26148-5_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26148-5_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26148-5_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26148-5_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-26148-5_11'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      23 PREDICATES      78 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-26148-5_11 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N8eb54e3fe8784f8c99be0be1c13481ea
4 schema:datePublished 2015-10-28
5 schema:datePublishedReg 2015-10-28
6 schema:description Massive event logs are produced in information systems, which record executions of business processes in organizations. Various techniques are proposed to discover process models reflecting real-life behaviors from these logs. However, the discovered models are mostly in Petri nets rather than BPMN models, the current industrial process modeling standard. Conforti et al. and Weber et al. propose techniques that discover BPMN models with sub-processes, multi-instance, etc. However, these techniques are made for event logs with special attributes, e.g., containing attributes about primary and foreign keys, which may not commonly appear in event logs. For example, logs from the OA (office automation) systems of CMCC (China Mobile Communications Corporation) do not contain such data. To solve this issue, this paper proposes two techniques that can discover BPMN models with sub-processes and multi-instance markers with event logs containing less event attributes. One of our techniques only requires four event attributes: case id, task name, start time and end time. Experimental evaluations with both real-life logs and synthetic logs show that our techniques can indeed discover process models with sub-process and multi-instance markers from logs with less event attributes, and are more accurate and less complex than those derived with flat process model discovery techniques.
7 schema:editor Ne4e69014a60d47219281ba3d7654696f
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N70b1430e8aa4420b950820b8a67b788e
12 schema:keywords BPMN models
13 CMCC
14 Massive event logs
15 OA system
16 Petri nets
17 Weber et al
18 al
19 attributes
20 behavior
21 business processes
22 case id
23 current industrial processes
24 data
25 discovery techniques
26 end time
27 et al
28 evaluation
29 event attributes
30 event logs
31 example
32 execution
33 experimental evaluation
34 flat process model discovery techniques
35 foreign keys
36 id
37 industrial processes
38 information systems
39 issues
40 key
41 less event attributes
42 log
43 markers
44 model
45 model discovery techniques
46 multi-instance markers
47 name
48 nets
49 organization
50 paper
51 process
52 process model
53 process model discovery techniques
54 propose techniques
55 real-life behavior
56 real-life logs
57 special attributes
58 standards
59 such data
60 synthetic logs
61 system
62 task names
63 technique
64 time
65 schema:name Discovering BPMN Models with Sub-processes and Multi-instance Markers
66 schema:pagination 185-201
67 schema:productId N4a388d67674d4f2c968be271c7b3d702
68 Nce062ff67e754038879744839cb46147
69 schema:publisher N7bae9c5bd46043969862d9d7b270b84d
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008465646
71 https://doi.org/10.1007/978-3-319-26148-5_11
72 schema:sdDatePublished 2022-01-01T19:22
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nb4b67136f44a4a3ea3a54ce461aeac7e
75 schema:url https://doi.org/10.1007/978-3-319-26148-5_11
76 sgo:license sg:explorer/license/
77 sgo:sdDataset chapters
78 rdf:type schema:Chapter
79 N06c43ce3b8bc4dfab495a8329a989662 rdf:first Nb7770edc3d2d49f3adb833d4bf0f963f
80 rdf:rest N5e3f5fff1800458fa7f361e4584682e6
81 N09e98781f63c46459a27a1d808158510 rdf:first Nbaf215ddde0a422ab97140ed4ed8612b
82 rdf:rest Nc01595efb36a4b68b4789d59211a66e7
83 N12cf26ee12e843d499913bff360d7be0 schema:affiliation grid-institutes:grid.12527.33
84 schema:familyName Wang
85 schema:givenName Yuquan
86 rdf:type schema:Person
87 N240551d12c3f4de489a1b80ead71d626 rdf:first sg:person.010652652311.19
88 rdf:rest Ndf4e9bd2138a44739de26a33e9fda2e0
89 N2fa8eba3baf4478385fcc7cf8ba0a4e2 schema:familyName Meersman
90 schema:givenName Robert
91 rdf:type schema:Person
92 N4a388d67674d4f2c968be271c7b3d702 schema:name dimensions_id
93 schema:value pub.1008465646
94 rdf:type schema:PropertyValue
95 N4b144510763a444591cb0eb3ffd86dca schema:familyName Ardagna
96 schema:givenName Claudio Agostino
97 rdf:type schema:Person
98 N5e3f5fff1800458fa7f361e4584682e6 rdf:first N4b144510763a444591cb0eb3ffd86dca
99 rdf:rest rdf:nil
100 N64796ae75f5d41baa9ceddca89b9831c schema:familyName Weichhart
101 schema:givenName Georg
102 rdf:type schema:Person
103 N70b1430e8aa4420b950820b8a67b788e schema:isbn 978-3-319-26147-8
104 978-3-319-26148-5
105 schema:name On the Move to Meaningful Internet Systems: OTM 2015 Conferences
106 rdf:type schema:Book
107 N7897b812fce5498385d3e86868a57cb5 rdf:first sg:person.012303351315.43
108 rdf:rest rdf:nil
109 N7bae9c5bd46043969862d9d7b270b84d schema:name Springer Nature
110 rdf:type schema:Organisation
111 N82af4dc4ce124aeb97f8f4fa43fd1f6b rdf:first Nb21eb69773ce4af1814992e6296b2826
112 rdf:rest N83ea00e22f534574978b48ba650a62ec
113 N83ea00e22f534574978b48ba650a62ec rdf:first N64796ae75f5d41baa9ceddca89b9831c
114 rdf:rest N06c43ce3b8bc4dfab495a8329a989662
115 N840dca2771ea4970905f7633a394e8a5 rdf:first sg:person.013640554311.55
116 rdf:rest N240551d12c3f4de489a1b80ead71d626
117 N8eb54e3fe8784f8c99be0be1c13481ea rdf:first N12cf26ee12e843d499913bff360d7be0
118 rdf:rest N840dca2771ea4970905f7633a394e8a5
119 Nb21eb69773ce4af1814992e6296b2826 schema:familyName Dillon
120 schema:givenName Tharam
121 rdf:type schema:Person
122 Nb4b67136f44a4a3ea3a54ce461aeac7e schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Nb7770edc3d2d49f3adb833d4bf0f963f schema:familyName An
125 schema:givenName Yuan
126 rdf:type schema:Person
127 Nbaf215ddde0a422ab97140ed4ed8612b schema:familyName Panetto
128 schema:givenName Hervé
129 rdf:type schema:Person
130 Nc01595efb36a4b68b4789d59211a66e7 rdf:first N2fa8eba3baf4478385fcc7cf8ba0a4e2
131 rdf:rest N82af4dc4ce124aeb97f8f4fa43fd1f6b
132 Nc99bca29452246cc819d57ab6c6abcae schema:familyName Debruyne
133 schema:givenName Christophe
134 rdf:type schema:Person
135 Nce062ff67e754038879744839cb46147 schema:name doi
136 schema:value 10.1007/978-3-319-26148-5_11
137 rdf:type schema:PropertyValue
138 Ndf4e9bd2138a44739de26a33e9fda2e0 rdf:first sg:person.012027116460.72
139 rdf:rest N7897b812fce5498385d3e86868a57cb5
140 Ne4e69014a60d47219281ba3d7654696f rdf:first Nc99bca29452246cc819d57ab6c6abcae
141 rdf:rest N09e98781f63c46459a27a1d808158510
142 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
143 schema:name Information and Computing Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
146 schema:name Information Systems
147 rdf:type schema:DefinedTerm
148 sg:person.010652652311.19 schema:affiliation grid-institutes:grid.411923.c
149 schema:familyName Yan
150 schema:givenName Zhiqiang
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010652652311.19
152 rdf:type schema:Person
153 sg:person.012027116460.72 schema:affiliation grid-institutes:grid.12527.33
154 schema:familyName Sun
155 schema:givenName Bo
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012027116460.72
157 rdf:type schema:Person
158 sg:person.012303351315.43 schema:affiliation grid-institutes:grid.12527.33
159 schema:familyName Wang
160 schema:givenName Jianmin
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351315.43
162 rdf:type schema:Person
163 sg:person.013640554311.55 schema:affiliation grid-institutes:grid.12527.33
164 schema:familyName Wen
165 schema:givenName Lijie
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013640554311.55
167 rdf:type schema:Person
168 grid-institutes:grid.12527.33 schema:alternateName School of Software, Tsinghua University, Beijing, China
169 schema:name School of Software, Tsinghua University, Beijing, China
170 rdf:type schema:Organization
171 grid-institutes:grid.411923.c schema:alternateName School of Information, Capital University of Economics and Business, Beijing, China
172 schema:name School of Information, Capital University of Economics and Business, Beijing, China
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...