Modelling Movement of Stock Market Indexes with Data from Emoticons of Twitter Users View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Alexander Porshnev , Ilya Redkin , Nikolay Karpov

ABSTRACT

The issue of using Twitter data to increase the prediction rate of stock price movements draws attention of many researchers. In this paper we examine the possibility of analyzing Twitter users’ emoticons to improve accuracy of predictions for DJIA and S&P500 stock market indices. We analyzed 1.6 billion tweets downloaded from February 13, 2013 to May 19, 2014. As a forecasting technique, we tested the Support Vector Machine (SVM), Neural Networks and Random Forest, which are commonly used for prediction tasks in finance analytics. The results of applying machine learning techniques to stock market price prediction are discussed. More... »

PAGES

297-306

Book

TITLE

Information Retrieval

ISBN

978-3-319-25484-5
978-3-319-25485-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-25485-2_10

DOI

http://dx.doi.org/10.1007/978-3-319-25485-2_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017627847


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Research University Higher School of Economics", 
          "id": "https://www.grid.ac/institutes/grid.410682.9", 
          "name": [
            "National Research University Higher School of Economics"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Porshnev", 
        "givenName": "Alexander", 
        "id": "sg:person.011601466776.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011601466776.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University Higher School of Economics", 
          "id": "https://www.grid.ac/institutes/grid.410682.9", 
          "name": [
            "National Research University Higher School of Economics"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Redkin", 
        "givenName": "Ilya", 
        "id": "sg:person.013174427776.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174427776.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University Higher School of Economics", 
          "id": "https://www.grid.ac/institutes/grid.410682.9", 
          "name": [
            "National Research University Higher School of Economics"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karpov", 
        "givenName": "Nikolay", 
        "id": "sg:person.010313304503.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010313304503.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1037/0022-3514.63.1.119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000923443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-5073(83)90120-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004690742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0022-3514.45.3.513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010707917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1121066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011016921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15427579jpfm0603_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011867071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15427579jpfm0603_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011867071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jocs.2010.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015168619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dss.2010.08.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016153863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0022-3514.45.1.20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034996849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1462198.1462204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038441637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1468-036x.2013.12007.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040159423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/261849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058575330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1257/jep.12.3.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064529924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1521/soco.1983.2.1.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067636070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/socialcom.2013.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094174576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wiiat.2008.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095075510"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "The issue of using Twitter data to increase the prediction rate of stock price movements draws attention of many researchers. In this paper we examine the possibility of analyzing Twitter users\u2019 emoticons to improve accuracy of predictions for DJIA and S&P500 stock market indices. We analyzed 1.6 billion tweets downloaded from February 13, 2013 to May 19, 2014. As a forecasting technique, we tested the Support Vector Machine (SVM), Neural Networks and Random Forest, which are commonly used for prediction tasks in finance analytics. The results of applying machine learning techniques to stock market price prediction are discussed.", 
    "editor": [
      {
        "familyName": "Braslavski", 
        "givenName": "Pavel", 
        "type": "Person"
      }, 
      {
        "familyName": "Karpov", 
        "givenName": "Nikolay", 
        "type": "Person"
      }, 
      {
        "familyName": "Worring", 
        "givenName": "Marcel", 
        "type": "Person"
      }, 
      {
        "familyName": "Volkovich", 
        "givenName": "Yana", 
        "type": "Person"
      }, 
      {
        "familyName": "Ignatov", 
        "givenName": "Dmitry I.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-25485-2_10", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-25484-5", 
        "978-3-319-25485-2"
      ], 
      "name": "Information Retrieval", 
      "type": "Book"
    }, 
    "name": "Modelling Movement of Stock Market Indexes with Data from Emoticons of Twitter Users", 
    "pagination": "297-306", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-25485-2_10"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "53fc94e50d10b0ecad1c6737d05d61206864365398c12d3a00287df1540e6f76"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017627847"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-25485-2_10", 
      "https://app.dimensions.ai/details/publication/pub.1017627847"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000584.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-25485-2_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25485-2_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25485-2_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25485-2_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25485-2_10'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-25485-2_10 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5012bf913f334e3c9c483f1d86f63470
4 schema:citation https://doi.org/10.1016/0030-5073(83)90120-4
5 https://doi.org/10.1016/j.dss.2010.08.019
6 https://doi.org/10.1016/j.jocs.2010.12.007
7 https://doi.org/10.1037/0022-3514.45.1.20
8 https://doi.org/10.1037/0022-3514.45.3.513
9 https://doi.org/10.1037/0022-3514.63.1.119
10 https://doi.org/10.1086/261849
11 https://doi.org/10.1109/socialcom.2013.54
12 https://doi.org/10.1109/wiiat.2008.309
13 https://doi.org/10.1111/j.1468-036x.2013.12007.x
14 https://doi.org/10.1126/science.1121066
15 https://doi.org/10.1145/1462198.1462204
16 https://doi.org/10.1207/s15427579jpfm0603_4
17 https://doi.org/10.1257/jep.12.3.151
18 https://doi.org/10.1521/soco.1983.2.1.18
19 schema:datePublished 2015
20 schema:datePublishedReg 2015-01-01
21 schema:description The issue of using Twitter data to increase the prediction rate of stock price movements draws attention of many researchers. In this paper we examine the possibility of analyzing Twitter users’ emoticons to improve accuracy of predictions for DJIA and S&P500 stock market indices. We analyzed 1.6 billion tweets downloaded from February 13, 2013 to May 19, 2014. As a forecasting technique, we tested the Support Vector Machine (SVM), Neural Networks and Random Forest, which are commonly used for prediction tasks in finance analytics. The results of applying machine learning techniques to stock market price prediction are discussed.
22 schema:editor N8bad3d2877b941088619be00a80d2e8c
23 schema:genre chapter
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf Ncbd882059266468c99b04e1f7e4f5353
27 schema:name Modelling Movement of Stock Market Indexes with Data from Emoticons of Twitter Users
28 schema:pagination 297-306
29 schema:productId N15c9840749ff4765a36a1de31cfb2f0b
30 N2f551a59783749cb894f4da4fd8f10ec
31 N4c994a28bf7b4cb68cef7255ac975a37
32 schema:publisher N1d5b1752383a4df58fb437d52328a264
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017627847
34 https://doi.org/10.1007/978-3-319-25485-2_10
35 schema:sdDatePublished 2019-04-15T17:50
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N0cbd25dc7ebb42bc9265e9383ba2747d
38 schema:url http://link.springer.com/10.1007/978-3-319-25485-2_10
39 sgo:license sg:explorer/license/
40 sgo:sdDataset chapters
41 rdf:type schema:Chapter
42 N0cbd25dc7ebb42bc9265e9383ba2747d schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N0ebfd71205c840dfbfc7ab7dea41d47c rdf:first sg:person.013174427776.43
45 rdf:rest Na58db6a9e7ee40b4b8f9047152d4ea37
46 N15c9840749ff4765a36a1de31cfb2f0b schema:name dimensions_id
47 schema:value pub.1017627847
48 rdf:type schema:PropertyValue
49 N1d5b1752383a4df58fb437d52328a264 schema:location Cham
50 schema:name Springer International Publishing
51 rdf:type schema:Organisation
52 N2f551a59783749cb894f4da4fd8f10ec schema:name readcube_id
53 schema:value 53fc94e50d10b0ecad1c6737d05d61206864365398c12d3a00287df1540e6f76
54 rdf:type schema:PropertyValue
55 N2fe78d1ca4ee494aa229c27e8252dd55 schema:familyName Volkovich
56 schema:givenName Yana
57 rdf:type schema:Person
58 N312288e633ec42c1952c159cf04a76b1 schema:familyName Braslavski
59 schema:givenName Pavel
60 rdf:type schema:Person
61 N4c994a28bf7b4cb68cef7255ac975a37 schema:name doi
62 schema:value 10.1007/978-3-319-25485-2_10
63 rdf:type schema:PropertyValue
64 N5012bf913f334e3c9c483f1d86f63470 rdf:first sg:person.011601466776.39
65 rdf:rest N0ebfd71205c840dfbfc7ab7dea41d47c
66 N5ec4f1e0da9349c8a6d833b122c7b706 rdf:first N68834b7b0dc4458a8fc783338c5ed540
67 rdf:rest rdf:nil
68 N68834b7b0dc4458a8fc783338c5ed540 schema:familyName Ignatov
69 schema:givenName Dmitry I.
70 rdf:type schema:Person
71 N8bad3d2877b941088619be00a80d2e8c rdf:first N312288e633ec42c1952c159cf04a76b1
72 rdf:rest Ncfcda1e779ea4d9cb3b3df031e956d26
73 Na58db6a9e7ee40b4b8f9047152d4ea37 rdf:first sg:person.010313304503.29
74 rdf:rest rdf:nil
75 Nc4b24a342c4e4a8b87a60dcaabbeb0b6 rdf:first Nd06e40c43f66436f9c1da79468d765dc
76 rdf:rest Nc59f92893c2048d293a9c61cf626d237
77 Nc59f92893c2048d293a9c61cf626d237 rdf:first N2fe78d1ca4ee494aa229c27e8252dd55
78 rdf:rest N5ec4f1e0da9349c8a6d833b122c7b706
79 Ncbd882059266468c99b04e1f7e4f5353 schema:isbn 978-3-319-25484-5
80 978-3-319-25485-2
81 schema:name Information Retrieval
82 rdf:type schema:Book
83 Ncfcda1e779ea4d9cb3b3df031e956d26 rdf:first Ndadbf617ac4d49e8bf3a990e24a99b6d
84 rdf:rest Nc4b24a342c4e4a8b87a60dcaabbeb0b6
85 Nd06e40c43f66436f9c1da79468d765dc schema:familyName Worring
86 schema:givenName Marcel
87 rdf:type schema:Person
88 Ndadbf617ac4d49e8bf3a990e24a99b6d schema:familyName Karpov
89 schema:givenName Nikolay
90 rdf:type schema:Person
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
95 schema:name Artificial Intelligence and Image Processing
96 rdf:type schema:DefinedTerm
97 sg:person.010313304503.29 schema:affiliation https://www.grid.ac/institutes/grid.410682.9
98 schema:familyName Karpov
99 schema:givenName Nikolay
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010313304503.29
101 rdf:type schema:Person
102 sg:person.011601466776.39 schema:affiliation https://www.grid.ac/institutes/grid.410682.9
103 schema:familyName Porshnev
104 schema:givenName Alexander
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011601466776.39
106 rdf:type schema:Person
107 sg:person.013174427776.43 schema:affiliation https://www.grid.ac/institutes/grid.410682.9
108 schema:familyName Redkin
109 schema:givenName Ilya
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174427776.43
111 rdf:type schema:Person
112 https://doi.org/10.1016/0030-5073(83)90120-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004690742
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.dss.2010.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016153863
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jocs.2010.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015168619
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1037/0022-3514.45.1.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034996849
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1037/0022-3514.45.3.513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010707917
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1037/0022-3514.63.1.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000923443
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1086/261849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058575330
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/socialcom.2013.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094174576
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/wiiat.2008.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095075510
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1111/j.1468-036x.2013.12007.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040159423
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1126/science.1121066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011016921
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1145/1462198.1462204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038441637
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1207/s15427579jpfm0603_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011867071
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1257/jep.12.3.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064529924
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1521/soco.1983.2.1.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067636070
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.410682.9 schema:alternateName National Research University Higher School of Economics
143 schema:name National Research University Higher School of Economics
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...