Two-Phased Event Causality Acquisition: Coupling the Boundary Identification and Argument Identification Approaches View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-11-03

AUTHORS

Yanan Cao , Cungen Cao , Jingzun Zhang , Wenjia Niu

ABSTRACT

Event causality is indispensable for knowledge-driven intelligent systems. In this paper, we propose a supervised method of extracting event causalities such as forest is cut downforest is destroyed from web text. While relation identification using lexico-syntactic patterns (LSPs) is not novel, it is still challenging to extract the event expressions with necessary arguments from identified causality mentions. To address this issue, our method divides event-pair extraction into two phases: event boundary identification and missing argument identification. In the first phase, we propose a Naive Baysian probability method to identify the boundary of causal events, and extract the corresponding text fragments as event expressions. Secondly, we learn a multi-class decision tree (LADTree) to identify the missing argument for each incomplete event. Experimental results showed the good effectiveness of our approach on a large-scale open corpus. More... »

PAGES

588-599

References to SciGraph publications

  • 2009. Using a Bigram Event Model to Predict Causal Potential in COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING
  • 2010-09. Explanation Knowledge Graph Construction Through Causality Extraction from Texts in JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
  • 2005. Causal Relation Extraction Using Cue Phrase and Lexical Pair Probabilities in NATURAL LANGUAGE PROCESSING – IJCNLP 2004
  • 2007. Learning Concepts from Text Based on the Inner-Constructive Model in KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT
  • 2009-10. Towards automatic causality boundary identification from root cause analysis reports in JOURNAL OF INTELLIGENT MANUFACTURING
  • 2002-09-20. Multiclass Alternating Decision Trees in MACHINE LEARNING: ECML 2002
  • Book

    TITLE

    Climate Change and Energy Dynamics in the Middle East

    ISBN

    978-3-030-11201-1
    978-3-030-11202-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-25159-2_53

    DOI

    http://dx.doi.org/10.1007/978-3-319-25159-2_53

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012929580


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Information Engineering", 
              "id": "https://www.grid.ac/institutes/grid.458480.5", 
              "name": [
                "Institute of Information Engineering, Chinese Academy of Science, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Yanan", 
            "id": "sg:person.014100162765.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014100162765.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chinese Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.9227.e", 
              "name": [
                "Institute of Computing Techonology, Chinese Academy of Science, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Cungen", 
            "id": "sg:person.013247453343.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247453343.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Information Engineering", 
              "id": "https://www.grid.ac/institutes/grid.458480.5", 
              "name": [
                "Institute of Information Engineering, Chinese Academy of Science, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Jingzun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Information Engineering", 
              "id": "https://www.grid.ac/institutes/grid.458480.5", 
              "name": [
                "Institute of Information Engineering, Chinese Academy of Science, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Niu", 
            "givenName": "Wenjia", 
            "id": "sg:person.012444021763.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012444021763.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/2433396.2433431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006687803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-76719-0_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006968410", 
              "https://doi.org/10.1007/978-3-540-76719-0_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-76719-0_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006968410", 
              "https://doi.org/10.1007/978-3-540-76719-0_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-00382-0_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008198628", 
              "https://doi.org/10.1007/978-3-642-00382-0_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-00382-0_35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008198628", 
              "https://doi.org/10.1007/978-3-642-00382-0_35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36755-1_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021589628", 
              "https://doi.org/10.1007/3-540-36755-1_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-36755-1_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021589628", 
              "https://doi.org/10.1007/3-540-36755-1_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30211-7_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022712585", 
              "https://doi.org/10.1007/978-3-540-30211-7_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30211-7_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022712585", 
              "https://doi.org/10.1007/978-3-540-30211-7_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10845-008-0143-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025175968", 
              "https://doi.org/10.1007/s10845-008-0143-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10845-008-0143-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025175968", 
              "https://doi.org/10.1007/s10845-008-0143-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2187836.2187958", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027808128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1113308.1113313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036491388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.procs.2014.05.043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037045961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11390-010-9387-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048687208", 
              "https://doi.org/10.1007/s11390-010-9387-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11390-010-9387-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048687208", 
              "https://doi.org/10.1007/s11390-010-9387-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icsc.2010.19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095477202"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/v1/p14-1093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099110679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/v1/p14-1093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099110679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1599081.1599082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099205919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1119312.1119322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099221169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3115/1119312.1119322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099221169"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-11-03", 
        "datePublishedReg": "2015-11-03", 
        "description": "Event causality is indispensable for knowledge-driven intelligent systems. In this paper, we propose a supervised method of extracting event causalities such as forest is cut downforest is destroyed from web text. While relation identification using lexico-syntactic patterns (LSPs) is not novel, it is still challenging to extract the event expressions with necessary arguments from identified causality mentions. To address this issue, our method divides event-pair extraction into two phases: event boundary identification and missing argument identification. In the first phase, we propose a Naive Baysian probability method to identify the boundary of causal events, and extract the corresponding text fragments as event expressions. Secondly, we learn a multi-class decision tree (LADTree) to identify the missing argument for each incomplete event. Experimental results showed the good effectiveness of our approach on a large-scale open corpus.", 
        "editor": [
          {
            "familyName": "Qudrat-Ullah", 
            "givenName": "Hassan", 
            "type": "Person"
          }, 
          {
            "familyName": "Kayal", 
            "givenName": "Aymen A.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-25159-2_53", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-030-11201-1", 
            "978-3-030-11202-8"
          ], 
          "name": "Climate Change and Energy Dynamics in the Middle East", 
          "type": "Book"
        }, 
        "name": "Two-Phased Event Causality Acquisition: Coupling the Boundary Identification and Argument Identification Approaches", 
        "pagination": "588-599", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012929580"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-25159-2_53"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3d98e691bc49dda26e4743f98ac9a0c7c150ef64afb9d57ab546e2b080563c5a"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-25159-2_53", 
          "https://app.dimensions.ai/details/publication/pub.1012929580"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T08:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78934_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-319-25159-2_53"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25159-2_53'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25159-2_53'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25159-2_53'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25159-2_53'


     

    This table displays all metadata directly associated to this object as RDF triples.

    141 TRIPLES      23 PREDICATES      40 URIs      19 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-25159-2_53 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nccdfae623c514512b2c4fc46bce004d7
    4 schema:citation sg:pub.10.1007/3-540-36755-1_14
    5 sg:pub.10.1007/978-3-540-30211-7_7
    6 sg:pub.10.1007/978-3-540-76719-0_27
    7 sg:pub.10.1007/978-3-642-00382-0_35
    8 sg:pub.10.1007/s10845-008-0143-z
    9 sg:pub.10.1007/s11390-010-9387-0
    10 https://doi.org/10.1016/j.procs.2014.05.043
    11 https://doi.org/10.1109/icsc.2010.19
    12 https://doi.org/10.1145/1113308.1113313
    13 https://doi.org/10.1145/2187836.2187958
    14 https://doi.org/10.1145/2433396.2433431
    15 https://doi.org/10.3115/1119312.1119322
    16 https://doi.org/10.3115/1599081.1599082
    17 https://doi.org/10.3115/v1/p14-1093
    18 schema:datePublished 2015-11-03
    19 schema:datePublishedReg 2015-11-03
    20 schema:description Event causality is indispensable for knowledge-driven intelligent systems. In this paper, we propose a supervised method of extracting event causalities such as forest is cut downforest is destroyed from web text. While relation identification using lexico-syntactic patterns (LSPs) is not novel, it is still challenging to extract the event expressions with necessary arguments from identified causality mentions. To address this issue, our method divides event-pair extraction into two phases: event boundary identification and missing argument identification. In the first phase, we propose a Naive Baysian probability method to identify the boundary of causal events, and extract the corresponding text fragments as event expressions. Secondly, we learn a multi-class decision tree (LADTree) to identify the missing argument for each incomplete event. Experimental results showed the good effectiveness of our approach on a large-scale open corpus.
    21 schema:editor N5324b4d17bf249dfb374f66cd91d980a
    22 schema:genre chapter
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N891fb420e57342eba62b2d267fb4da6b
    26 schema:name Two-Phased Event Causality Acquisition: Coupling the Boundary Identification and Argument Identification Approaches
    27 schema:pagination 588-599
    28 schema:productId N2f66992c6c7a47149de609ada67b3ad8
    29 N63b8b3cc4d57446d8cf70f34b6725ced
    30 N7c0bebf0e06843f9960dfdefd083f493
    31 schema:publisher N2889bfd1cf684a68bc45c1a314125f9e
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012929580
    33 https://doi.org/10.1007/978-3-319-25159-2_53
    34 schema:sdDatePublished 2019-04-16T08:49
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher Nf11a8724f24d413fbf59cb3f22c8002c
    37 schema:url https://link.springer.com/10.1007%2F978-3-319-25159-2_53
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset chapters
    40 rdf:type schema:Chapter
    41 N101650b814e54b60a035baad09ce0bcb schema:familyName Kayal
    42 schema:givenName Aymen A.
    43 rdf:type schema:Person
    44 N1af7e30dcdfc422087d195c1553af092 rdf:first sg:person.013247453343.54
    45 rdf:rest N63de751baa6740699b9e5bcf747ecc63
    46 N1c9bb1884ead4a328ca3b01be4c53a71 schema:familyName Qudrat-Ullah
    47 schema:givenName Hassan
    48 rdf:type schema:Person
    49 N2889bfd1cf684a68bc45c1a314125f9e schema:location Cham
    50 schema:name Springer International Publishing
    51 rdf:type schema:Organisation
    52 N2f66992c6c7a47149de609ada67b3ad8 schema:name readcube_id
    53 schema:value 3d98e691bc49dda26e4743f98ac9a0c7c150ef64afb9d57ab546e2b080563c5a
    54 rdf:type schema:PropertyValue
    55 N5324b4d17bf249dfb374f66cd91d980a rdf:first N1c9bb1884ead4a328ca3b01be4c53a71
    56 rdf:rest Nc8cafe1cff0d406eab2adbfe05582627
    57 N63b8b3cc4d57446d8cf70f34b6725ced schema:name dimensions_id
    58 schema:value pub.1012929580
    59 rdf:type schema:PropertyValue
    60 N63de751baa6740699b9e5bcf747ecc63 rdf:first Na879f84e52f94f83b7f43751191a2f65
    61 rdf:rest Nb64cf6742bc14b1989b2d3189ebd2810
    62 N7c0bebf0e06843f9960dfdefd083f493 schema:name doi
    63 schema:value 10.1007/978-3-319-25159-2_53
    64 rdf:type schema:PropertyValue
    65 N891fb420e57342eba62b2d267fb4da6b schema:isbn 978-3-030-11201-1
    66 978-3-030-11202-8
    67 schema:name Climate Change and Energy Dynamics in the Middle East
    68 rdf:type schema:Book
    69 Na879f84e52f94f83b7f43751191a2f65 schema:affiliation https://www.grid.ac/institutes/grid.458480.5
    70 schema:familyName Zhang
    71 schema:givenName Jingzun
    72 rdf:type schema:Person
    73 Nb64cf6742bc14b1989b2d3189ebd2810 rdf:first sg:person.012444021763.54
    74 rdf:rest rdf:nil
    75 Nc8cafe1cff0d406eab2adbfe05582627 rdf:first N101650b814e54b60a035baad09ce0bcb
    76 rdf:rest rdf:nil
    77 Nccdfae623c514512b2c4fc46bce004d7 rdf:first sg:person.014100162765.09
    78 rdf:rest N1af7e30dcdfc422087d195c1553af092
    79 Nf11a8724f24d413fbf59cb3f22c8002c schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Information and Computing Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Artificial Intelligence and Image Processing
    86 rdf:type schema:DefinedTerm
    87 sg:person.012444021763.54 schema:affiliation https://www.grid.ac/institutes/grid.458480.5
    88 schema:familyName Niu
    89 schema:givenName Wenjia
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012444021763.54
    91 rdf:type schema:Person
    92 sg:person.013247453343.54 schema:affiliation https://www.grid.ac/institutes/grid.9227.e
    93 schema:familyName Cao
    94 schema:givenName Cungen
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247453343.54
    96 rdf:type schema:Person
    97 sg:person.014100162765.09 schema:affiliation https://www.grid.ac/institutes/grid.458480.5
    98 schema:familyName Cao
    99 schema:givenName Yanan
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014100162765.09
    101 rdf:type schema:Person
    102 sg:pub.10.1007/3-540-36755-1_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021589628
    103 https://doi.org/10.1007/3-540-36755-1_14
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/978-3-540-30211-7_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022712585
    106 https://doi.org/10.1007/978-3-540-30211-7_7
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/978-3-540-76719-0_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006968410
    109 https://doi.org/10.1007/978-3-540-76719-0_27
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/978-3-642-00382-0_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008198628
    112 https://doi.org/10.1007/978-3-642-00382-0_35
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s10845-008-0143-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025175968
    115 https://doi.org/10.1007/s10845-008-0143-z
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s11390-010-9387-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048687208
    118 https://doi.org/10.1007/s11390-010-9387-0
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.procs.2014.05.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037045961
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1109/icsc.2010.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095477202
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1145/1113308.1113313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036491388
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1145/2187836.2187958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027808128
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1145/2433396.2433431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006687803
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.3115/1119312.1119322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099221169
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.3115/1599081.1599082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099205919
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.3115/v1/p14-1093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099110679
    135 rdf:type schema:CreativeWork
    136 https://www.grid.ac/institutes/grid.458480.5 schema:alternateName Institute of Information Engineering
    137 schema:name Institute of Information Engineering, Chinese Academy of Science, Beijing, China
    138 rdf:type schema:Organization
    139 https://www.grid.ac/institutes/grid.9227.e schema:alternateName Chinese Academy of Sciences
    140 schema:name Institute of Computing Techonology, Chinese Academy of Science, Beijing, China
    141 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...