Machine Learning for Data Science: Mathematical or Computational View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Li M. Chen , Zhixun Su , Bo Jiang

ABSTRACT

Machine learning usually requires getting a training and testing set of samples. The training set is used to obtain the model, and then, the testing set is used to verify the model. In general, a machine learning method requires an iterated process for reaching a goal. Machine learning is one of the research areas in artificial intelligence. Machine learning is mainly used to solve problems in classification and clustering. The distinction is that machine learning uses automated algorithms to learn from sample data for finding rules or making classifications. Therefore, the earliest machine learning method should be the regression method in statistics. Modern machine learning does not rely on a mathematical model such as linear equations used in regression. Online data mining and networking based applications nowadays request that machine learning be able to make decisions based on partial data sets. When more data samples are available, the algorithm must be able to adjust accordingly. Therefore, in cloud computing, and BigData related methods in data science, machine learning becomes the primary technology. We have introduced the PCA, k-NN and k-means, and other methods in artificial intelligence in Chap. 2 In this chapter, we will do an overview of other important machine learning methods such as decision trees, neural networks, and genetic algorithms. We will also introduce variational learning, support vector machine, and computational learning theory with some problems related to mathematical data processing. More... »

PAGES

63-74

Book

TITLE

Mathematical Problems in Data Science

ISBN

978-3-319-25125-7
978-3-319-25127-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-25127-1_4

DOI

http://dx.doi.org/10.1007/978-3-319-25127-1_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042765077


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of the District of Columbia", 
          "id": "https://www.grid.ac/institutes/grid.267550.3", 
          "name": [
            "The University of the District of Columbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Li M.", 
        "id": "sg:person.07656121577.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07656121577.06"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Su", 
        "givenName": "Zhixun", 
        "id": "sg:person.013044044761.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013044044761.12"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Jiang", 
        "givenName": "Bo", 
        "id": "sg:person.015234366361.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234366361.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/76359.76371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004063675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/323533a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018367015", 
          "https://doi.org/10.1038/323533a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1032573094", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-84858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032573094", 
          "https://doi.org/10.1007/978-0-387-84858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b0-12-227240-4/00132-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034624933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1020874308076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035462968", 
          "https://doi.org/10.1023/a:1020874308076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1968.1972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038881641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-12099-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046621845", 
          "https://doi.org/10.1007/978-3-319-12099-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-12099-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046621845", 
          "https://doi.org/10.1007/978-3-319-12099-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1327452.1327492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047364446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160420503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047539455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160420503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047539455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artint.2011.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051531599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.824819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1116025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062866403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14778/2180912.2180915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067367957"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "Machine learning usually requires getting a training and testing set of samples. The training set is used to obtain the model, and then, the testing set is used to verify the model. In general, a machine learning method requires an iterated process for reaching a goal. Machine learning is one of the research areas in artificial intelligence. Machine learning is mainly used to solve problems in classification and clustering. The distinction is that machine learning uses automated algorithms to learn from sample data for finding rules or making classifications. Therefore, the earliest machine learning method should be the regression method in statistics. Modern machine learning does not rely on a mathematical model such as linear equations used in regression. Online data mining and networking based applications nowadays request that machine learning be able to make decisions based on partial data sets. When more data samples are available, the algorithm must be able to adjust accordingly. Therefore, in cloud computing, and BigData related methods in data science, machine learning becomes the primary technology. We have introduced the PCA, k-NN and k-means, and other methods in artificial intelligence in Chap.\u20092 In\u00a0this chapter, we will do an overview of other important machine learning methods such as decision trees, neural networks, and genetic algorithms. We will also introduce variational learning, support vector machine, and computational learning theory with some problems related to mathematical data processing.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-25127-1_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-25125-7", 
        "978-3-319-25127-1"
      ], 
      "name": "Mathematical Problems in Data Science", 
      "type": "Book"
    }, 
    "name": "Machine Learning for Data Science: Mathematical or Computational", 
    "pagination": "63-74", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-25127-1_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cbb55ae6cc47096ff22cf6c7714a41eb4ebc5ac3eaf1dc492c33d2cf4c5aeacd"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042765077"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-25127-1_4", 
      "https://app.dimensions.ai/details/publication/pub.1042765077"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000269.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-25127-1_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25127-1_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25127-1_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25127-1_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25127-1_4'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      22 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-25127-1_4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb9b791385f9942fe81d9722518e9b232
4 schema:citation sg:pub.10.1007/978-0-387-84858-7
5 sg:pub.10.1007/978-1-4757-2440-0
6 sg:pub.10.1007/978-3-319-12099-7
7 sg:pub.10.1023/a:1020874308076
8 sg:pub.10.1038/323533a0
9 https://app.dimensions.ai/details/publication/pub.1032573094
10 https://doi.org/10.1002/cpa.3160420503
11 https://doi.org/10.1016/b0-12-227240-4/00132-5
12 https://doi.org/10.1016/j.artint.2011.01.005
13 https://doi.org/10.1109/34.824819
14 https://doi.org/10.1137/1116025
15 https://doi.org/10.1145/1327452.1327492
16 https://doi.org/10.1145/1968.1972
17 https://doi.org/10.1145/76359.76371
18 https://doi.org/10.14778/2180912.2180915
19 schema:datePublished 2015
20 schema:datePublishedReg 2015-01-01
21 schema:description Machine learning usually requires getting a training and testing set of samples. The training set is used to obtain the model, and then, the testing set is used to verify the model. In general, a machine learning method requires an iterated process for reaching a goal. Machine learning is one of the research areas in artificial intelligence. Machine learning is mainly used to solve problems in classification and clustering. The distinction is that machine learning uses automated algorithms to learn from sample data for finding rules or making classifications. Therefore, the earliest machine learning method should be the regression method in statistics. Modern machine learning does not rely on a mathematical model such as linear equations used in regression. Online data mining and networking based applications nowadays request that machine learning be able to make decisions based on partial data sets. When more data samples are available, the algorithm must be able to adjust accordingly. Therefore, in cloud computing, and BigData related methods in data science, machine learning becomes the primary technology. We have introduced the PCA, k-NN and k-means, and other methods in artificial intelligence in Chap. 2 In this chapter, we will do an overview of other important machine learning methods such as decision trees, neural networks, and genetic algorithms. We will also introduce variational learning, support vector machine, and computational learning theory with some problems related to mathematical data processing.
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N2bcf77315292452ab7807b7216809e90
26 schema:name Machine Learning for Data Science: Mathematical or Computational
27 schema:pagination 63-74
28 schema:productId N2994ac185eb9482c9ee63ea1501ad693
29 N3311e04efdbf47708f1b38e153318546
30 N3a75ed20b5944b488b818c601d747a9d
31 schema:publisher N333d82b19f1e4974bf5ef4fca99d71dd
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042765077
33 https://doi.org/10.1007/978-3-319-25127-1_4
34 schema:sdDatePublished 2019-04-15T18:13
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N7631b6599e6d443bbeb6999829d5e0e3
37 schema:url http://link.springer.com/10.1007/978-3-319-25127-1_4
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N2994ac185eb9482c9ee63ea1501ad693 schema:name readcube_id
42 schema:value cbb55ae6cc47096ff22cf6c7714a41eb4ebc5ac3eaf1dc492c33d2cf4c5aeacd
43 rdf:type schema:PropertyValue
44 N2bcf77315292452ab7807b7216809e90 schema:isbn 978-3-319-25125-7
45 978-3-319-25127-1
46 schema:name Mathematical Problems in Data Science
47 rdf:type schema:Book
48 N3311e04efdbf47708f1b38e153318546 schema:name doi
49 schema:value 10.1007/978-3-319-25127-1_4
50 rdf:type schema:PropertyValue
51 N333d82b19f1e4974bf5ef4fca99d71dd schema:location Cham
52 schema:name Springer International Publishing
53 rdf:type schema:Organisation
54 N3a75ed20b5944b488b818c601d747a9d schema:name dimensions_id
55 schema:value pub.1042765077
56 rdf:type schema:PropertyValue
57 N7631b6599e6d443bbeb6999829d5e0e3 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N793d5b804d034a6aba57aee9b87c2a60 rdf:first sg:person.015234366361.82
60 rdf:rest rdf:nil
61 Nb217528a6a274550ac19661b04e2480d rdf:first sg:person.013044044761.12
62 rdf:rest N793d5b804d034a6aba57aee9b87c2a60
63 Nb9b791385f9942fe81d9722518e9b232 rdf:first sg:person.07656121577.06
64 rdf:rest Nb217528a6a274550ac19661b04e2480d
65 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
66 schema:name Information and Computing Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
69 schema:name Artificial Intelligence and Image Processing
70 rdf:type schema:DefinedTerm
71 sg:person.013044044761.12 schema:familyName Su
72 schema:givenName Zhixun
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013044044761.12
74 rdf:type schema:Person
75 sg:person.015234366361.82 schema:familyName Jiang
76 schema:givenName Bo
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234366361.82
78 rdf:type schema:Person
79 sg:person.07656121577.06 schema:affiliation https://www.grid.ac/institutes/grid.267550.3
80 schema:familyName Chen
81 schema:givenName Li M.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07656121577.06
83 rdf:type schema:Person
84 sg:pub.10.1007/978-0-387-84858-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032573094
85 https://doi.org/10.1007/978-0-387-84858-7
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
88 https://doi.org/10.1007/978-1-4757-2440-0
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/978-3-319-12099-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046621845
91 https://doi.org/10.1007/978-3-319-12099-7
92 rdf:type schema:CreativeWork
93 sg:pub.10.1023/a:1020874308076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035462968
94 https://doi.org/10.1023/a:1020874308076
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/323533a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018367015
97 https://doi.org/10.1038/323533a0
98 rdf:type schema:CreativeWork
99 https://app.dimensions.ai/details/publication/pub.1032573094 schema:CreativeWork
100 https://doi.org/10.1002/cpa.3160420503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047539455
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/b0-12-227240-4/00132-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034624933
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.artint.2011.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051531599
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/34.824819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157039
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1137/1116025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062866403
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1145/1327452.1327492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047364446
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1145/1968.1972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038881641
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1145/76359.76371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004063675
115 rdf:type schema:CreativeWork
116 https://doi.org/10.14778/2180912.2180915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067367957
117 rdf:type schema:CreativeWork
118 https://www.grid.ac/institutes/grid.267550.3 schema:alternateName University of the District of Columbia
119 schema:name The University of the District of Columbia
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...