Texture Classification Using Rao’s Distance on the Space of Covariance Matrices View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Salem Said , Lionel Bombrun , Yannick Berthoumieu

ABSTRACT

The current paper introduces new prior distributions on the zero-mean multivariate Gaussian model, with the aim of applying them to the classification of covariance matrices populations. These new prior distributions are entirely based on the Riemannian geometry of the multivariate Gaussian model. More precisely, the proposed Riemannian Gaussian distribution has two parameters, the centre of mass \(\bar{Y}\) and the dispersion parameter \(\sigma \). Its density with respect to Riemannian volume is proportional to \(\exp (-d^2(Y; \bar{Y}))\), where \(d^2(Y; \bar{Y})\) is the square of Rao’s Riemannian distance. We derive its maximum likelihood estimators and propose an experiment on the VisTex database for the classification of texture images. More... »

PAGES

371-378

Book

TITLE

Geometric Science of Information

ISBN

978-3-319-25039-7
978-3-319-25040-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-25040-3_40

DOI

http://dx.doi.org/10.1007/978-3-319-25040-3_40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030593140


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Laboratoire IMS, CNRS - UMR 5218, Universit\u00e9 de Bordeaux"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Said", 
        "givenName": "Salem", 
        "id": "sg:person.016161076243.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161076243.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Laboratoire IMS, CNRS - UMR 5218, Universit\u00e9 de Bordeaux"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bombrun", 
        "givenName": "Lionel", 
        "id": "sg:person.010253405443.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253405443.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Laboratoire IMS, CNRS - UMR 5218, Universit\u00e9 de Bordeaux"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berthoumieu", 
        "givenName": "Yannick", 
        "id": "sg:person.010636166221.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636166221.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3390/e16074015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002869950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3820-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008241329", 
          "https://doi.org/10.1007/978-1-4612-3820-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3820-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008241329", 
          "https://doi.org/10.1007/978-1-4612-3820-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2009.2016067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015666916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-006-6897-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319281", 
          "https://doi.org/10.1007/s10851-006-6897-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-006-6897-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319281", 
          "https://doi.org/10.1007/s10851-006-6897-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22092-0_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032586168", 
          "https://doi.org/10.1007/978-3-642-22092-0_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22092-0_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032586168", 
          "https://doi.org/10.1007/978-3-642-22092-0_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-006-6228-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049137733", 
          "https://doi.org/10.1007/s10851-006-6228-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-006-6228-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049137733", 
          "https://doi.org/10.1007/s10851-006-6228-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2011.2172210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2002.804262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2015.7351448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095177422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2014.7025893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095285020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098730554"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "The current paper introduces new prior distributions on the zero-mean multivariate Gaussian model, with the aim of applying them to the classification of covariance matrices populations. These new prior distributions are entirely based on the Riemannian geometry of the multivariate Gaussian model. More precisely, the proposed Riemannian Gaussian distribution has two parameters, the centre of mass \\(\\bar{Y}\\) and the dispersion parameter \\(\\sigma \\). Its density with respect to Riemannian volume is proportional to \\(\\exp (-d^2(Y; \\bar{Y}))\\), where \\(d^2(Y; \\bar{Y})\\) is the square of Rao\u2019s Riemannian distance. We derive its maximum likelihood estimators and propose an experiment on the VisTex database for the classification of texture images.", 
    "editor": [
      {
        "familyName": "Nielsen", 
        "givenName": "Frank", 
        "type": "Person"
      }, 
      {
        "familyName": "Barbaresco", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-25040-3_40", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-25039-7", 
        "978-3-319-25040-3"
      ], 
      "name": "Geometric Science of Information", 
      "type": "Book"
    }, 
    "name": "Texture Classification Using Rao\u2019s Distance on the Space of Covariance Matrices", 
    "pagination": "371-378", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-25040-3_40"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "91bdf4fb8ece2c9352913be35cd3380a97a4d926c94f3ba2d3532c1209f83b28"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030593140"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-25040-3_40", 
      "https://app.dimensions.ai/details/publication/pub.1030593140"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000262.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-25040-3_40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25040-3_40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25040-3_40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25040-3_40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25040-3_40'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-25040-3_40 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nfca4b4ecc2f24ef5b60f63f0f9b400bf
4 schema:citation sg:pub.10.1007/978-1-4612-3820-1
5 sg:pub.10.1007/978-3-642-22092-0_13
6 sg:pub.10.1007/s10851-006-6228-4
7 sg:pub.10.1007/s10851-006-6897-z
8 https://doi.org/10.1090/gsm/034
9 https://doi.org/10.1109/icip.2014.7025893
10 https://doi.org/10.1109/icip.2015.7351448
11 https://doi.org/10.1109/tbme.2011.2172210
12 https://doi.org/10.1109/tip.2002.804262
13 https://doi.org/10.1109/tit.2009.2016067
14 https://doi.org/10.3390/e16074015
15 schema:datePublished 2015
16 schema:datePublishedReg 2015-01-01
17 schema:description The current paper introduces new prior distributions on the zero-mean multivariate Gaussian model, with the aim of applying them to the classification of covariance matrices populations. These new prior distributions are entirely based on the Riemannian geometry of the multivariate Gaussian model. More precisely, the proposed Riemannian Gaussian distribution has two parameters, the centre of mass \(\bar{Y}\) and the dispersion parameter \(\sigma \). Its density with respect to Riemannian volume is proportional to \(\exp (-d^2(Y; \bar{Y}))\), where \(d^2(Y; \bar{Y})\) is the square of Rao’s Riemannian distance. We derive its maximum likelihood estimators and propose an experiment on the VisTex database for the classification of texture images.
18 schema:editor N2463f9ea52534b299a31921b490e4e29
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N003260b0d13e4627951e8d26a3b9061d
23 schema:name Texture Classification Using Rao’s Distance on the Space of Covariance Matrices
24 schema:pagination 371-378
25 schema:productId N4b6dda188c184acfabde3ad66baf92f8
26 N9f2cdbdfbce243b0a1a0f1e89d6ed2ca
27 Nfc370047e1ff48b6a6904dd2731ad7d3
28 schema:publisher N7a74c93f76d04407ade8198dbdfa3064
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030593140
30 https://doi.org/10.1007/978-3-319-25040-3_40
31 schema:sdDatePublished 2019-04-15T12:32
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N66b43c41af3149e2915b26e88c0a8d3f
34 schema:url http://link.springer.com/10.1007/978-3-319-25040-3_40
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N003260b0d13e4627951e8d26a3b9061d schema:isbn 978-3-319-25039-7
39 978-3-319-25040-3
40 schema:name Geometric Science of Information
41 rdf:type schema:Book
42 N2463f9ea52534b299a31921b490e4e29 rdf:first N7987c4b4d1954198b9b06c93639c5288
43 rdf:rest N97c3fbdb75404b0995c351a44cf8a28a
44 N27a02dfe017f4a8b93930686687f790f rdf:first sg:person.010253405443.59
45 rdf:rest N2d069b43a679458290475452f2e72dc9
46 N2d069b43a679458290475452f2e72dc9 rdf:first sg:person.010636166221.26
47 rdf:rest rdf:nil
48 N4b6dda188c184acfabde3ad66baf92f8 schema:name dimensions_id
49 schema:value pub.1030593140
50 rdf:type schema:PropertyValue
51 N66b43c41af3149e2915b26e88c0a8d3f schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N7987c4b4d1954198b9b06c93639c5288 schema:familyName Nielsen
54 schema:givenName Frank
55 rdf:type schema:Person
56 N7a74c93f76d04407ade8198dbdfa3064 schema:location Cham
57 schema:name Springer International Publishing
58 rdf:type schema:Organisation
59 N8343adc6e4974c6ca9164bdcae8bc655 schema:familyName Barbaresco
60 schema:givenName Frédéric
61 rdf:type schema:Person
62 N97c3fbdb75404b0995c351a44cf8a28a rdf:first N8343adc6e4974c6ca9164bdcae8bc655
63 rdf:rest rdf:nil
64 N9f2cdbdfbce243b0a1a0f1e89d6ed2ca schema:name doi
65 schema:value 10.1007/978-3-319-25040-3_40
66 rdf:type schema:PropertyValue
67 Nfc370047e1ff48b6a6904dd2731ad7d3 schema:name readcube_id
68 schema:value 91bdf4fb8ece2c9352913be35cd3380a97a4d926c94f3ba2d3532c1209f83b28
69 rdf:type schema:PropertyValue
70 Nfca4b4ecc2f24ef5b60f63f0f9b400bf rdf:first sg:person.016161076243.21
71 rdf:rest N27a02dfe017f4a8b93930686687f790f
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 sg:person.010253405443.59 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
79 schema:familyName Bombrun
80 schema:givenName Lionel
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253405443.59
82 rdf:type schema:Person
83 sg:person.010636166221.26 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
84 schema:familyName Berthoumieu
85 schema:givenName Yannick
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636166221.26
87 rdf:type schema:Person
88 sg:person.016161076243.21 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
89 schema:familyName Said
90 schema:givenName Salem
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161076243.21
92 rdf:type schema:Person
93 sg:pub.10.1007/978-1-4612-3820-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008241329
94 https://doi.org/10.1007/978-1-4612-3820-1
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-3-642-22092-0_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032586168
97 https://doi.org/10.1007/978-3-642-22092-0_13
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s10851-006-6228-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049137733
100 https://doi.org/10.1007/s10851-006-6228-4
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10851-006-6897-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020319281
103 https://doi.org/10.1007/s10851-006-6897-z
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1090/gsm/034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098730554
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/icip.2014.7025893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095285020
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/icip.2015.7351448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095177422
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/tbme.2011.2172210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528600
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/tip.2002.804262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640766
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/tit.2009.2016067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015666916
116 rdf:type schema:CreativeWork
117 https://doi.org/10.3390/e16074015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002869950
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.412041.2 schema:alternateName University of Bordeaux
120 schema:name Laboratoire IMS, CNRS - UMR 5218, Université de Bordeaux
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...