Texture Classification Using Rao’s Distance on the Space of Covariance Matrices View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Salem Said , Lionel Bombrun , Yannick Berthoumieu

ABSTRACT

The current paper introduces new prior distributions on the zero-mean multivariate Gaussian model, with the aim of applying them to the classification of covariance matrices populations. These new prior distributions are entirely based on the Riemannian geometry of the multivariate Gaussian model. More precisely, the proposed Riemannian Gaussian distribution has two parameters, the centre of mass \(\bar{Y}\) and the dispersion parameter \(\sigma \). Its density with respect to Riemannian volume is proportional to \(\exp (-d^2(Y; \bar{Y}))\), where \(d^2(Y; \bar{Y})\) is the square of Rao’s Riemannian distance. We derive its maximum likelihood estimators and propose an experiment on the VisTex database for the classification of texture images. More... »

PAGES

371-378

Book

TITLE

Geometric Science of Information

ISBN

978-3-319-25039-7
978-3-319-25040-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-25040-3_40

DOI

http://dx.doi.org/10.1007/978-3-319-25040-3_40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030593140


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Laboratoire IMS, CNRS - UMR 5218, Universit\u00e9 de Bordeaux"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Said", 
        "givenName": "Salem", 
        "id": "sg:person.016161076243.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161076243.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Laboratoire IMS, CNRS - UMR 5218, Universit\u00e9 de Bordeaux"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bombrun", 
        "givenName": "Lionel", 
        "id": "sg:person.010253405443.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253405443.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Laboratoire IMS, CNRS - UMR 5218, Universit\u00e9 de Bordeaux"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berthoumieu", 
        "givenName": "Yannick", 
        "id": "sg:person.010636166221.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636166221.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3390/e16074015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002869950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3820-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008241329", 
          "https://doi.org/10.1007/978-1-4612-3820-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3820-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008241329", 
          "https://doi.org/10.1007/978-1-4612-3820-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2009.2016067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015666916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-006-6897-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319281", 
          "https://doi.org/10.1007/s10851-006-6897-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-006-6897-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319281", 
          "https://doi.org/10.1007/s10851-006-6897-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22092-0_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032586168", 
          "https://doi.org/10.1007/978-3-642-22092-0_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22092-0_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032586168", 
          "https://doi.org/10.1007/978-3-642-22092-0_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-006-6228-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049137733", 
          "https://doi.org/10.1007/s10851-006-6228-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-006-6228-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049137733", 
          "https://doi.org/10.1007/s10851-006-6228-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2011.2172210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2002.804262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2015.7351448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095177422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2014.7025893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095285020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098730554"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "The current paper introduces new prior distributions on the zero-mean multivariate Gaussian model, with the aim of applying them to the classification of covariance matrices populations. These new prior distributions are entirely based on the Riemannian geometry of the multivariate Gaussian model. More precisely, the proposed Riemannian Gaussian distribution has two parameters, the centre of mass \\(\\bar{Y}\\) and the dispersion parameter \\(\\sigma \\). Its density with respect to Riemannian volume is proportional to \\(\\exp (-d^2(Y; \\bar{Y}))\\), where \\(d^2(Y; \\bar{Y})\\) is the square of Rao\u2019s Riemannian distance. We derive its maximum likelihood estimators and propose an experiment on the VisTex database for the classification of texture images.", 
    "editor": [
      {
        "familyName": "Nielsen", 
        "givenName": "Frank", 
        "type": "Person"
      }, 
      {
        "familyName": "Barbaresco", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-25040-3_40", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-25039-7", 
        "978-3-319-25040-3"
      ], 
      "name": "Geometric Science of Information", 
      "type": "Book"
    }, 
    "name": "Texture Classification Using Rao\u2019s Distance on the Space of Covariance Matrices", 
    "pagination": "371-378", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-25040-3_40"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "91bdf4fb8ece2c9352913be35cd3380a97a4d926c94f3ba2d3532c1209f83b28"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030593140"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-25040-3_40", 
      "https://app.dimensions.ai/details/publication/pub.1030593140"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000262.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-25040-3_40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25040-3_40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25040-3_40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25040-3_40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25040-3_40'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-25040-3_40 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf583e41917434167ab7eca8d154a7c66
4 schema:citation sg:pub.10.1007/978-1-4612-3820-1
5 sg:pub.10.1007/978-3-642-22092-0_13
6 sg:pub.10.1007/s10851-006-6228-4
7 sg:pub.10.1007/s10851-006-6897-z
8 https://doi.org/10.1090/gsm/034
9 https://doi.org/10.1109/icip.2014.7025893
10 https://doi.org/10.1109/icip.2015.7351448
11 https://doi.org/10.1109/tbme.2011.2172210
12 https://doi.org/10.1109/tip.2002.804262
13 https://doi.org/10.1109/tit.2009.2016067
14 https://doi.org/10.3390/e16074015
15 schema:datePublished 2015
16 schema:datePublishedReg 2015-01-01
17 schema:description The current paper introduces new prior distributions on the zero-mean multivariate Gaussian model, with the aim of applying them to the classification of covariance matrices populations. These new prior distributions are entirely based on the Riemannian geometry of the multivariate Gaussian model. More precisely, the proposed Riemannian Gaussian distribution has two parameters, the centre of mass \(\bar{Y}\) and the dispersion parameter \(\sigma \). Its density with respect to Riemannian volume is proportional to \(\exp (-d^2(Y; \bar{Y}))\), where \(d^2(Y; \bar{Y})\) is the square of Rao’s Riemannian distance. We derive its maximum likelihood estimators and propose an experiment on the VisTex database for the classification of texture images.
18 schema:editor Neb2b34b9d6694d4f8cb76859581d6246
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N323d91899d47410c8f7128042228d997
23 schema:name Texture Classification Using Rao’s Distance on the Space of Covariance Matrices
24 schema:pagination 371-378
25 schema:productId N2fe85037ccd14e29954b36850c58ce0a
26 N495b9234ccf049749ca3b6ec942431b8
27 Nb067ecfadc514677b2551eca5f9c7081
28 schema:publisher N6494f40805ef47ff9712f9e2285509ac
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030593140
30 https://doi.org/10.1007/978-3-319-25040-3_40
31 schema:sdDatePublished 2019-04-15T12:32
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N76d2c24801a54570b6dd3dd0529e1723
34 schema:url http://link.springer.com/10.1007/978-3-319-25040-3_40
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N2fe85037ccd14e29954b36850c58ce0a schema:name readcube_id
39 schema:value 91bdf4fb8ece2c9352913be35cd3380a97a4d926c94f3ba2d3532c1209f83b28
40 rdf:type schema:PropertyValue
41 N323d91899d47410c8f7128042228d997 schema:isbn 978-3-319-25039-7
42 978-3-319-25040-3
43 schema:name Geometric Science of Information
44 rdf:type schema:Book
45 N401302bf79004168b732dfd7bc9e13d3 schema:familyName Nielsen
46 schema:givenName Frank
47 rdf:type schema:Person
48 N495b9234ccf049749ca3b6ec942431b8 schema:name doi
49 schema:value 10.1007/978-3-319-25040-3_40
50 rdf:type schema:PropertyValue
51 N5051c30d1db041719a2878aacf5f55c1 rdf:first sg:person.010253405443.59
52 rdf:rest Nd38ffcd431934f6a8d900add8938dede
53 N6494f40805ef47ff9712f9e2285509ac schema:location Cham
54 schema:name Springer International Publishing
55 rdf:type schema:Organisation
56 N76d2c24801a54570b6dd3dd0529e1723 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nb067ecfadc514677b2551eca5f9c7081 schema:name dimensions_id
59 schema:value pub.1030593140
60 rdf:type schema:PropertyValue
61 Ncd381e3c5bdb4e2bb475981622992275 rdf:first Nfa8d061a10f64088a3c326a5ea8c8305
62 rdf:rest rdf:nil
63 Nd38ffcd431934f6a8d900add8938dede rdf:first sg:person.010636166221.26
64 rdf:rest rdf:nil
65 Neb2b34b9d6694d4f8cb76859581d6246 rdf:first N401302bf79004168b732dfd7bc9e13d3
66 rdf:rest Ncd381e3c5bdb4e2bb475981622992275
67 Nf583e41917434167ab7eca8d154a7c66 rdf:first sg:person.016161076243.21
68 rdf:rest N5051c30d1db041719a2878aacf5f55c1
69 Nfa8d061a10f64088a3c326a5ea8c8305 schema:familyName Barbaresco
70 schema:givenName Frédéric
71 rdf:type schema:Person
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 sg:person.010253405443.59 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
79 schema:familyName Bombrun
80 schema:givenName Lionel
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253405443.59
82 rdf:type schema:Person
83 sg:person.010636166221.26 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
84 schema:familyName Berthoumieu
85 schema:givenName Yannick
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636166221.26
87 rdf:type schema:Person
88 sg:person.016161076243.21 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
89 schema:familyName Said
90 schema:givenName Salem
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161076243.21
92 rdf:type schema:Person
93 sg:pub.10.1007/978-1-4612-3820-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008241329
94 https://doi.org/10.1007/978-1-4612-3820-1
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-3-642-22092-0_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032586168
97 https://doi.org/10.1007/978-3-642-22092-0_13
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s10851-006-6228-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049137733
100 https://doi.org/10.1007/s10851-006-6228-4
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10851-006-6897-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020319281
103 https://doi.org/10.1007/s10851-006-6897-z
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1090/gsm/034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098730554
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/icip.2014.7025893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095285020
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/icip.2015.7351448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095177422
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/tbme.2011.2172210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528600
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/tip.2002.804262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640766
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/tit.2009.2016067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015666916
116 rdf:type schema:CreativeWork
117 https://doi.org/10.3390/e16074015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002869950
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.412041.2 schema:alternateName University of Bordeaux
120 schema:name Laboratoire IMS, CNRS - UMR 5218, Université de Bordeaux
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...