Texture Classification Using Rao’s Distance on the Space of Covariance Matrices View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Salem Said , Lionel Bombrun , Yannick Berthoumieu

ABSTRACT

The current paper introduces new prior distributions on the zero-mean multivariate Gaussian model, with the aim of applying them to the classification of covariance matrices populations. These new prior distributions are entirely based on the Riemannian geometry of the multivariate Gaussian model. More precisely, the proposed Riemannian Gaussian distribution has two parameters, the centre of mass \(\bar{Y}\) and the dispersion parameter \(\sigma \). Its density with respect to Riemannian volume is proportional to \(\exp (-d^2(Y; \bar{Y}))\), where \(d^2(Y; \bar{Y})\) is the square of Rao’s Riemannian distance. We derive its maximum likelihood estimators and propose an experiment on the VisTex database for the classification of texture images. More... »

PAGES

371-378

References to SciGraph publications

Book

TITLE

Geometric Science of Information

ISBN

978-3-319-25039-7
978-3-319-25040-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-25040-3_40

DOI

http://dx.doi.org/10.1007/978-3-319-25040-3_40

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030593140


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Laboratoire IMS, CNRS - UMR 5218, Universit\u00e9 de Bordeaux"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Said", 
        "givenName": "Salem", 
        "id": "sg:person.016161076243.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161076243.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Laboratoire IMS, CNRS - UMR 5218, Universit\u00e9 de Bordeaux"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bombrun", 
        "givenName": "Lionel", 
        "id": "sg:person.010253405443.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253405443.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Laboratoire IMS, CNRS - UMR 5218, Universit\u00e9 de Bordeaux"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berthoumieu", 
        "givenName": "Yannick", 
        "id": "sg:person.010636166221.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636166221.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3390/e16074015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002869950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3820-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008241329", 
          "https://doi.org/10.1007/978-1-4612-3820-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-3820-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008241329", 
          "https://doi.org/10.1007/978-1-4612-3820-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2009.2016067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015666916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-006-6897-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319281", 
          "https://doi.org/10.1007/s10851-006-6897-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-006-6897-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020319281", 
          "https://doi.org/10.1007/s10851-006-6897-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22092-0_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032586168", 
          "https://doi.org/10.1007/978-3-642-22092-0_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-22092-0_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032586168", 
          "https://doi.org/10.1007/978-3-642-22092-0_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-006-6228-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049137733", 
          "https://doi.org/10.1007/s10851-006-6228-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10851-006-6228-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049137733", 
          "https://doi.org/10.1007/s10851-006-6228-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2011.2172210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061528600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2002.804262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2015.7351448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095177422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2014.7025893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095285020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098730554"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "The current paper introduces new prior distributions on the zero-mean multivariate Gaussian model, with the aim of applying them to the classification of covariance matrices populations. These new prior distributions are entirely based on the Riemannian geometry of the multivariate Gaussian model. More precisely, the proposed Riemannian Gaussian distribution has two parameters, the centre of mass \\(\\bar{Y}\\) and the dispersion parameter \\(\\sigma \\). Its density with respect to Riemannian volume is proportional to \\(\\exp (-d^2(Y; \\bar{Y}))\\), where \\(d^2(Y; \\bar{Y})\\) is the square of Rao\u2019s Riemannian distance. We derive its maximum likelihood estimators and propose an experiment on the VisTex database for the classification of texture images.", 
    "editor": [
      {
        "familyName": "Nielsen", 
        "givenName": "Frank", 
        "type": "Person"
      }, 
      {
        "familyName": "Barbaresco", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-25040-3_40", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-25039-7", 
        "978-3-319-25040-3"
      ], 
      "name": "Geometric Science of Information", 
      "type": "Book"
    }, 
    "name": "Texture Classification Using Rao\u2019s Distance on the Space of Covariance Matrices", 
    "pagination": "371-378", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-25040-3_40"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "91bdf4fb8ece2c9352913be35cd3380a97a4d926c94f3ba2d3532c1209f83b28"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030593140"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-25040-3_40", 
      "https://app.dimensions.ai/details/publication/pub.1030593140"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000262.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-25040-3_40"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25040-3_40'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25040-3_40'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25040-3_40'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-25040-3_40'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-25040-3_40 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N959b2d92ff16450e90e763def0f6f73c
4 schema:citation sg:pub.10.1007/978-1-4612-3820-1
5 sg:pub.10.1007/978-3-642-22092-0_13
6 sg:pub.10.1007/s10851-006-6228-4
7 sg:pub.10.1007/s10851-006-6897-z
8 https://doi.org/10.1090/gsm/034
9 https://doi.org/10.1109/icip.2014.7025893
10 https://doi.org/10.1109/icip.2015.7351448
11 https://doi.org/10.1109/tbme.2011.2172210
12 https://doi.org/10.1109/tip.2002.804262
13 https://doi.org/10.1109/tit.2009.2016067
14 https://doi.org/10.3390/e16074015
15 schema:datePublished 2015
16 schema:datePublishedReg 2015-01-01
17 schema:description The current paper introduces new prior distributions on the zero-mean multivariate Gaussian model, with the aim of applying them to the classification of covariance matrices populations. These new prior distributions are entirely based on the Riemannian geometry of the multivariate Gaussian model. More precisely, the proposed Riemannian Gaussian distribution has two parameters, the centre of mass \(\bar{Y}\) and the dispersion parameter \(\sigma \). Its density with respect to Riemannian volume is proportional to \(\exp (-d^2(Y; \bar{Y}))\), where \(d^2(Y; \bar{Y})\) is the square of Rao’s Riemannian distance. We derive its maximum likelihood estimators and propose an experiment on the VisTex database for the classification of texture images.
18 schema:editor N3c5663f3dd2640079cd3c1345e11d7dd
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf Ne0033bf955134d688ee947e1b0b94377
23 schema:name Texture Classification Using Rao’s Distance on the Space of Covariance Matrices
24 schema:pagination 371-378
25 schema:productId N07e02f12099a4687aaa2a2fd56b5ab09
26 N26cad83ac1ee42c5bf34fe5503d8a440
27 Ne6ca2f9b9a9448f3a6bd2ccae9b0cd84
28 schema:publisher N2d8e541db0974ad4bfbe2ab47721378b
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030593140
30 https://doi.org/10.1007/978-3-319-25040-3_40
31 schema:sdDatePublished 2019-04-15T12:32
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N3407f0b1ac8e40a79c4a91e622110c58
34 schema:url http://link.springer.com/10.1007/978-3-319-25040-3_40
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N0215f4a3ca6243428239c2e1cd144920 rdf:first sg:person.010253405443.59
39 rdf:rest Nf82cd89679fa4112972785521ac786e9
40 N07e02f12099a4687aaa2a2fd56b5ab09 schema:name dimensions_id
41 schema:value pub.1030593140
42 rdf:type schema:PropertyValue
43 N1b2085bae7ea4c61b099dfaf762ad956 schema:familyName Barbaresco
44 schema:givenName Frédéric
45 rdf:type schema:Person
46 N26cad83ac1ee42c5bf34fe5503d8a440 schema:name readcube_id
47 schema:value 91bdf4fb8ece2c9352913be35cd3380a97a4d926c94f3ba2d3532c1209f83b28
48 rdf:type schema:PropertyValue
49 N2d8e541db0974ad4bfbe2ab47721378b schema:location Cham
50 schema:name Springer International Publishing
51 rdf:type schema:Organisation
52 N3407f0b1ac8e40a79c4a91e622110c58 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N3c5663f3dd2640079cd3c1345e11d7dd rdf:first N485102ed7ebe409990ced0e5b7480b1e
55 rdf:rest N48ea5b291a764ecc91c5fd31da02e501
56 N485102ed7ebe409990ced0e5b7480b1e schema:familyName Nielsen
57 schema:givenName Frank
58 rdf:type schema:Person
59 N48ea5b291a764ecc91c5fd31da02e501 rdf:first N1b2085bae7ea4c61b099dfaf762ad956
60 rdf:rest rdf:nil
61 N959b2d92ff16450e90e763def0f6f73c rdf:first sg:person.016161076243.21
62 rdf:rest N0215f4a3ca6243428239c2e1cd144920
63 Ne0033bf955134d688ee947e1b0b94377 schema:isbn 978-3-319-25039-7
64 978-3-319-25040-3
65 schema:name Geometric Science of Information
66 rdf:type schema:Book
67 Ne6ca2f9b9a9448f3a6bd2ccae9b0cd84 schema:name doi
68 schema:value 10.1007/978-3-319-25040-3_40
69 rdf:type schema:PropertyValue
70 Nf82cd89679fa4112972785521ac786e9 rdf:first sg:person.010636166221.26
71 rdf:rest rdf:nil
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
76 schema:name Artificial Intelligence and Image Processing
77 rdf:type schema:DefinedTerm
78 sg:person.010253405443.59 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
79 schema:familyName Bombrun
80 schema:givenName Lionel
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010253405443.59
82 rdf:type schema:Person
83 sg:person.010636166221.26 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
84 schema:familyName Berthoumieu
85 schema:givenName Yannick
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636166221.26
87 rdf:type schema:Person
88 sg:person.016161076243.21 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
89 schema:familyName Said
90 schema:givenName Salem
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161076243.21
92 rdf:type schema:Person
93 sg:pub.10.1007/978-1-4612-3820-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008241329
94 https://doi.org/10.1007/978-1-4612-3820-1
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-3-642-22092-0_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032586168
97 https://doi.org/10.1007/978-3-642-22092-0_13
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s10851-006-6228-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049137733
100 https://doi.org/10.1007/s10851-006-6228-4
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10851-006-6897-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020319281
103 https://doi.org/10.1007/s10851-006-6897-z
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1090/gsm/034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098730554
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/icip.2014.7025893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095285020
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/icip.2015.7351448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095177422
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/tbme.2011.2172210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061528600
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/tip.2002.804262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640766
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/tit.2009.2016067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015666916
116 rdf:type schema:CreativeWork
117 https://doi.org/10.3390/e16074015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002869950
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.412041.2 schema:alternateName University of Bordeaux
120 schema:name Laboratoire IMS, CNRS - UMR 5218, Université de Bordeaux
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...