Segmentation of Right Ventricle in Cardiac MR Images Using Shape Regression View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2015

AUTHORS

Suman Sedai , Pallab Roy , Rahil Garnavi

ABSTRACT

Accurate and automatic segmentation of the right ventricle is challenging due to its complex anatomy and large shape variation observed between patients. In this paper the ability of shape regression is explored to segment right ventricle in presence of large shape variation among the patients. We propose a robust and efficient cascaded shape regression method which iteratively learns the final shape from a given initial shape. We use gradient boosted regression trees to learn each regressor in the cascade to take the advantage of supervised feature selection mechanism. A novel data augmentation method is proposed to generate synthetic training samples to improve regressors performance. In addition to that, a robust fusion method is proposed to reduce the the variance in the predictions given by different initial shapes, which is a major drawback of cascade regression based methods. The proposed method is evaluated on an image set of 45 patients and shows high segmentation accuracy with dice metric of \(0.87\pm 0.06\). Comparative study shows that our proposed method performs better than state-of-the-art multi-atlas label fusion based segmentation methods. More... »

PAGES

1-8

References to SciGraph publications

  • 2003. Automatic Segmentation of Cardiac MRI in MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2003
  • 2014-04. Face Alignment by Explicit Shape Regression in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2012. Cardiac LV and RV Segmentation Using Mutual Context Information in MACHINE LEARNING IN MEDICAL IMAGING
  • Book

    TITLE

    Machine Learning in Medical Imaging

    ISBN

    978-3-319-24887-5
    978-3-319-24888-2

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-24888-2_1

    DOI

    http://dx.doi.org/10.1007/978-3-319-24888-2_1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041455140


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "IBM Research - Australia", 
              "id": "https://www.grid.ac/institutes/grid.481553.e", 
              "name": [
                "IBM Research Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sedai", 
            "givenName": "Suman", 
            "id": "sg:person.0754065601.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754065601.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IBM Research - Australia", 
              "id": "https://www.grid.ac/institutes/grid.481553.e", 
              "name": [
                "IBM Research Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roy", 
            "givenName": "Pallab", 
            "id": "sg:person.014475727637.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014475727637.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IBM Research - Australia", 
              "id": "https://www.grid.ac/institutes/grid.481553.e", 
              "name": [
                "IBM Research Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garnavi", 
            "givenName": "Rahil", 
            "id": "sg:person.01337507642.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337507642.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1109/tmi.2009.2035616", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001635701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2010.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014917290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-39899-8_65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020860245", 
              "https://doi.org/10.1007/978-3-540-39899-8_65"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-39899-8_65", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020860245", 
              "https://doi.org/10.1007/978-3-540-39899-8_65"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/cviu.1995.1004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021804206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2014.10.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029446752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1013203451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030645893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-35428-1_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038876799", 
              "https://doi.org/10.1007/978-3-642-35428-1_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11263-013-0667-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052893716", 
              "https://doi.org/10.1007/s11263-013-0667-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/42.925294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061171037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2010.2050897", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2012.143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061744255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2010.5540094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095128699"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015", 
        "datePublishedReg": "2015-01-01", 
        "description": "Accurate and automatic segmentation of the right ventricle is challenging due to its complex anatomy and large shape variation observed between patients. In this paper the ability of shape regression is explored to segment right ventricle in presence of large shape variation among the patients. We propose a robust and efficient cascaded shape regression method which iteratively learns the final shape from a given initial shape. We use gradient boosted regression trees to learn each regressor in the cascade to take the advantage of supervised feature selection mechanism. A novel data augmentation method is proposed to generate synthetic training samples to improve regressors performance. In addition to that, a robust fusion method is proposed to reduce the the variance in the predictions given by different initial shapes, which is a major drawback of cascade regression based methods. The proposed method is evaluated on an image set of 45 patients and shows high segmentation accuracy with dice metric of \\(0.87\\pm 0.06\\). Comparative study shows that our proposed method performs better than state-of-the-art multi-atlas label fusion based segmentation methods.", 
        "editor": [
          {
            "familyName": "Zhou", 
            "givenName": "Luping", 
            "type": "Person"
          }, 
          {
            "familyName": "Wang", 
            "givenName": "Li", 
            "type": "Person"
          }, 
          {
            "familyName": "Wang", 
            "givenName": "Qian", 
            "type": "Person"
          }, 
          {
            "familyName": "Shi", 
            "givenName": "Yinghuan", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-24888-2_1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-319-24887-5", 
            "978-3-319-24888-2"
          ], 
          "name": "Machine Learning in Medical Imaging", 
          "type": "Book"
        }, 
        "name": "Segmentation of Right Ventricle in Cardiac MR Images Using Shape Regression", 
        "pagination": "1-8", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-24888-2_1"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c57b08a5a5e9f7c237b22d3b1e3fbb3e2d15c06050c200d1bf9f7ba7779f08d3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041455140"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-24888-2_1", 
          "https://app.dimensions.ai/details/publication/pub.1041455140"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T19:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000592.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-24888-2_1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24888-2_1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24888-2_1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24888-2_1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24888-2_1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    133 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-24888-2_1 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N5fa11d0eaa684687a709596ab189b711
    4 schema:citation sg:pub.10.1007/978-3-540-39899-8_65
    5 sg:pub.10.1007/978-3-642-35428-1_25
    6 sg:pub.10.1007/s11263-013-0667-3
    7 https://doi.org/10.1006/cviu.1995.1004
    8 https://doi.org/10.1016/j.media.2010.04.002
    9 https://doi.org/10.1016/j.media.2014.10.004
    10 https://doi.org/10.1109/42.925294
    11 https://doi.org/10.1109/cvpr.2010.5540094
    12 https://doi.org/10.1109/tmi.2009.2035616
    13 https://doi.org/10.1109/tmi.2010.2050897
    14 https://doi.org/10.1109/tpami.2012.143
    15 https://doi.org/10.1214/aos/1013203451
    16 schema:datePublished 2015
    17 schema:datePublishedReg 2015-01-01
    18 schema:description Accurate and automatic segmentation of the right ventricle is challenging due to its complex anatomy and large shape variation observed between patients. In this paper the ability of shape regression is explored to segment right ventricle in presence of large shape variation among the patients. We propose a robust and efficient cascaded shape regression method which iteratively learns the final shape from a given initial shape. We use gradient boosted regression trees to learn each regressor in the cascade to take the advantage of supervised feature selection mechanism. A novel data augmentation method is proposed to generate synthetic training samples to improve regressors performance. In addition to that, a robust fusion method is proposed to reduce the the variance in the predictions given by different initial shapes, which is a major drawback of cascade regression based methods. The proposed method is evaluated on an image set of 45 patients and shows high segmentation accuracy with dice metric of \(0.87\pm 0.06\). Comparative study shows that our proposed method performs better than state-of-the-art multi-atlas label fusion based segmentation methods.
    19 schema:editor Nb60d178b73144bbc90a0e6bfdf016907
    20 schema:genre chapter
    21 schema:inLanguage en
    22 schema:isAccessibleForFree true
    23 schema:isPartOf Ne111725bc19b4b2288d07033dbadc3b2
    24 schema:name Segmentation of Right Ventricle in Cardiac MR Images Using Shape Regression
    25 schema:pagination 1-8
    26 schema:productId N29f298ce8aea4e53ad149eabb5b26aa9
    27 N8044a9b92e4340eab47a20025874bced
    28 N83ef739d695a43bfb42c4169bc06bf6c
    29 schema:publisher N99a3c84791ef4cdea641e8e8e311f3c9
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041455140
    31 https://doi.org/10.1007/978-3-319-24888-2_1
    32 schema:sdDatePublished 2019-04-15T19:47
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher Ne31ee2d7c0e14e80a736942c8a3a60aa
    35 schema:url http://link.springer.com/10.1007/978-3-319-24888-2_1
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset chapters
    38 rdf:type schema:Chapter
    39 N29f298ce8aea4e53ad149eabb5b26aa9 schema:name doi
    40 schema:value 10.1007/978-3-319-24888-2_1
    41 rdf:type schema:PropertyValue
    42 N2d096d8677ab494396c48c12cf0d331f rdf:first sg:person.014475727637.05
    43 rdf:rest N49fc61aad69f460ba6c03cac41b63d96
    44 N49fc61aad69f460ba6c03cac41b63d96 rdf:first sg:person.01337507642.38
    45 rdf:rest rdf:nil
    46 N4f2fc67e651d49a9875c86ea1f4a5450 rdf:first N6b6b1afe98b645d995feeaefc4edb2a0
    47 rdf:rest N685a89939c9b4fd0984ceb35f534473b
    48 N5fa11d0eaa684687a709596ab189b711 rdf:first sg:person.0754065601.77
    49 rdf:rest N2d096d8677ab494396c48c12cf0d331f
    50 N685a89939c9b4fd0984ceb35f534473b rdf:first N7a9d0959a5dd463bba287b7bdf6121ce
    51 rdf:rest rdf:nil
    52 N6b6b1afe98b645d995feeaefc4edb2a0 schema:familyName Wang
    53 schema:givenName Qian
    54 rdf:type schema:Person
    55 N7a9d0959a5dd463bba287b7bdf6121ce schema:familyName Shi
    56 schema:givenName Yinghuan
    57 rdf:type schema:Person
    58 N8044a9b92e4340eab47a20025874bced schema:name readcube_id
    59 schema:value c57b08a5a5e9f7c237b22d3b1e3fbb3e2d15c06050c200d1bf9f7ba7779f08d3
    60 rdf:type schema:PropertyValue
    61 N83ef739d695a43bfb42c4169bc06bf6c schema:name dimensions_id
    62 schema:value pub.1041455140
    63 rdf:type schema:PropertyValue
    64 N99a3c84791ef4cdea641e8e8e311f3c9 schema:location Cham
    65 schema:name Springer International Publishing
    66 rdf:type schema:Organisation
    67 Nb60d178b73144bbc90a0e6bfdf016907 rdf:first Nd54f8cbeab51419cbe2b451f9b08a2d1
    68 rdf:rest Nb815c00b58d7423b8593e54b14d7cef1
    69 Nb815c00b58d7423b8593e54b14d7cef1 rdf:first Nf640c27d3c9645ea97967b02419bfd3e
    70 rdf:rest N4f2fc67e651d49a9875c86ea1f4a5450
    71 Nd54f8cbeab51419cbe2b451f9b08a2d1 schema:familyName Zhou
    72 schema:givenName Luping
    73 rdf:type schema:Person
    74 Ne111725bc19b4b2288d07033dbadc3b2 schema:isbn 978-3-319-24887-5
    75 978-3-319-24888-2
    76 schema:name Machine Learning in Medical Imaging
    77 rdf:type schema:Book
    78 Ne31ee2d7c0e14e80a736942c8a3a60aa schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 Nf640c27d3c9645ea97967b02419bfd3e schema:familyName Wang
    81 schema:givenName Li
    82 rdf:type schema:Person
    83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Information and Computing Sciences
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Artificial Intelligence and Image Processing
    88 rdf:type schema:DefinedTerm
    89 sg:person.01337507642.38 schema:affiliation https://www.grid.ac/institutes/grid.481553.e
    90 schema:familyName Garnavi
    91 schema:givenName Rahil
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337507642.38
    93 rdf:type schema:Person
    94 sg:person.014475727637.05 schema:affiliation https://www.grid.ac/institutes/grid.481553.e
    95 schema:familyName Roy
    96 schema:givenName Pallab
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014475727637.05
    98 rdf:type schema:Person
    99 sg:person.0754065601.77 schema:affiliation https://www.grid.ac/institutes/grid.481553.e
    100 schema:familyName Sedai
    101 schema:givenName Suman
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754065601.77
    103 rdf:type schema:Person
    104 sg:pub.10.1007/978-3-540-39899-8_65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020860245
    105 https://doi.org/10.1007/978-3-540-39899-8_65
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-3-642-35428-1_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038876799
    108 https://doi.org/10.1007/978-3-642-35428-1_25
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s11263-013-0667-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052893716
    111 https://doi.org/10.1007/s11263-013-0667-3
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1006/cviu.1995.1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021804206
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.media.2010.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014917290
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/j.media.2014.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029446752
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1109/42.925294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061171037
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1109/cvpr.2010.5540094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095128699
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1109/tmi.2009.2035616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001635701
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/tmi.2010.2050897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695575
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1109/tpami.2012.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744255
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1214/aos/1013203451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030645893
    130 rdf:type schema:CreativeWork
    131 https://www.grid.ac/institutes/grid.481553.e schema:alternateName IBM Research - Australia
    132 schema:name IBM Research Australia
    133 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...