Segmentation in Point Clouds from RGB-D Using Spectral Graph Reduction View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-10-01

AUTHORS

Margret Keuper , Thomas Brox

ABSTRACT

In this chapter, we tackle the problem of segmentation in point clouds from RGB-D data. In contrast to full point clouds, RGB-D data only provides a part of the volumetric information, the depth information of the one view given in the corresponding RGB image. Still, this additional information is valuable for the segmentation task as it helps disambiguating texture gradients from structure gradients. In order to create hierarchical segmentations, we combine a state-of-the-art method for natural RGB image segmentation based on spectral graph analysis with an RGB-D boundary detector. We show that spectral graph reduction can be employed in this case, facilitating the computation of RGB-D segmentations in large datasets. More... »

PAGES

155-168

Book

TITLE

Perspectives in Shape Analysis

ISBN

978-3-319-24724-3
978-3-319-24726-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-24726-7_7

DOI

http://dx.doi.org/10.1007/978-3-319-24726-7_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002890759


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keuper", 
        "givenName": "Margret", 
        "id": "sg:person.013477515133.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013477515133.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brox", 
        "givenName": "Thomas", 
        "id": "sg:person.012443225372.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-10-01", 
    "datePublishedReg": "2016-10-01", 
    "description": "In this chapter, we tackle the problem of segmentation in point clouds from RGB-D data. In contrast to full point clouds, RGB-D data only provides a part of the volumetric information, the depth information of the one view given in the corresponding RGB image. Still, this additional information is valuable for the segmentation task as it helps disambiguating texture gradients from structure gradients. In order to create hierarchical segmentations, we combine a state-of-the-art method for natural RGB image segmentation based on spectral graph analysis with an RGB-D boundary detector. We show that spectral graph reduction can be employed in this case, facilitating the computation of RGB-D segmentations in large datasets.", 
    "editor": [
      {
        "familyName": "Breu\u00df", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "familyName": "Bruckstein", 
        "givenName": "Alfred", 
        "type": "Person"
      }, 
      {
        "familyName": "Maragos", 
        "givenName": "Petros", 
        "type": "Person"
      }, 
      {
        "familyName": "Wuhrer", 
        "givenName": "Stefanie", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-24726-7_7", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-24724-3", 
        "978-3-319-24726-7"
      ], 
      "name": "Perspectives in Shape Analysis", 
      "type": "Book"
    }, 
    "keywords": [
      "RGB-D data", 
      "point clouds", 
      "graph reduction", 
      "RGB-D segmentation", 
      "corresponding RGB image", 
      "problem of segmentation", 
      "full point cloud", 
      "segmentation task", 
      "spectral graph analysis", 
      "image segmentation", 
      "RGB images", 
      "hierarchical segmentation", 
      "art methods", 
      "depth information", 
      "large datasets", 
      "boundary detector", 
      "segmentation", 
      "graph analysis", 
      "volumetric information", 
      "cloud", 
      "RGB", 
      "information", 
      "dataset", 
      "additional information", 
      "task", 
      "computation", 
      "images", 
      "texture gradient", 
      "data", 
      "order", 
      "method", 
      "view", 
      "detector", 
      "chapter", 
      "state", 
      "part", 
      "analysis", 
      "cases", 
      "gradient", 
      "reduction", 
      "structure gradient", 
      "contrast", 
      "problem"
    ], 
    "name": "Segmentation in Point Clouds from RGB-D Using Spectral Graph Reduction", 
    "pagination": "155-168", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002890759"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-24726-7_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-24726-7_7", 
      "https://app.dimensions.ai/details/publication/pub.1002890759"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_252.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-24726-7_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24726-7_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24726-7_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24726-7_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24726-7_7'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      22 PREDICATES      66 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-24726-7_7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N5eed6baa7ee24d81ae81553bffaea269
4 schema:datePublished 2016-10-01
5 schema:datePublishedReg 2016-10-01
6 schema:description In this chapter, we tackle the problem of segmentation in point clouds from RGB-D data. In contrast to full point clouds, RGB-D data only provides a part of the volumetric information, the depth information of the one view given in the corresponding RGB image. Still, this additional information is valuable for the segmentation task as it helps disambiguating texture gradients from structure gradients. In order to create hierarchical segmentations, we combine a state-of-the-art method for natural RGB image segmentation based on spectral graph analysis with an RGB-D boundary detector. We show that spectral graph reduction can be employed in this case, facilitating the computation of RGB-D segmentations in large datasets.
7 schema:editor N6cc46059d25f4c02ade554f11bf23f61
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Naa149e3b13f34a73aa7937256718c064
11 schema:keywords RGB
12 RGB images
13 RGB-D data
14 RGB-D segmentation
15 additional information
16 analysis
17 art methods
18 boundary detector
19 cases
20 chapter
21 cloud
22 computation
23 contrast
24 corresponding RGB image
25 data
26 dataset
27 depth information
28 detector
29 full point cloud
30 gradient
31 graph analysis
32 graph reduction
33 hierarchical segmentation
34 image segmentation
35 images
36 information
37 large datasets
38 method
39 order
40 part
41 point clouds
42 problem
43 problem of segmentation
44 reduction
45 segmentation
46 segmentation task
47 spectral graph analysis
48 state
49 structure gradient
50 task
51 texture gradient
52 view
53 volumetric information
54 schema:name Segmentation in Point Clouds from RGB-D Using Spectral Graph Reduction
55 schema:pagination 155-168
56 schema:productId N41c241fcad1641f6a17d9ef354a75d24
57 Nb13a00b61d81445091fbf52c6d569a16
58 schema:publisher N345ad01a96664b399c47296d1e20a228
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002890759
60 https://doi.org/10.1007/978-3-319-24726-7_7
61 schema:sdDatePublished 2022-10-01T06:55
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nafdc37726063409e8e3ba46bfc7f7b1d
64 schema:url https://doi.org/10.1007/978-3-319-24726-7_7
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N2b6d10eb23ee4d97908b578bb22f42fe rdf:first Nd2e1da90ff974c94ae77c20ea7a7ba0c
69 rdf:rest rdf:nil
70 N345ad01a96664b399c47296d1e20a228 schema:name Springer Nature
71 rdf:type schema:Organisation
72 N35839c846d7a4e7a841b9bd5a3a00450 rdf:first sg:person.012443225372.65
73 rdf:rest rdf:nil
74 N41c241fcad1641f6a17d9ef354a75d24 schema:name doi
75 schema:value 10.1007/978-3-319-24726-7_7
76 rdf:type schema:PropertyValue
77 N5eed6baa7ee24d81ae81553bffaea269 rdf:first sg:person.013477515133.33
78 rdf:rest N35839c846d7a4e7a841b9bd5a3a00450
79 N6cc46059d25f4c02ade554f11bf23f61 rdf:first Nb9f4b916a6304516aa81ffa6a298c678
80 rdf:rest Nad816838aab24670bbd0686aa2a320e5
81 N6f210f3c16d249f4981ae9cb6748ff78 rdf:first Ne3dddba99fb94a308ae6b6ef9fc7e647
82 rdf:rest N2b6d10eb23ee4d97908b578bb22f42fe
83 N9a40011473b543ab83c58b7954529927 schema:familyName Bruckstein
84 schema:givenName Alfred
85 rdf:type schema:Person
86 Naa149e3b13f34a73aa7937256718c064 schema:isbn 978-3-319-24724-3
87 978-3-319-24726-7
88 schema:name Perspectives in Shape Analysis
89 rdf:type schema:Book
90 Nad816838aab24670bbd0686aa2a320e5 rdf:first N9a40011473b543ab83c58b7954529927
91 rdf:rest N6f210f3c16d249f4981ae9cb6748ff78
92 Nafdc37726063409e8e3ba46bfc7f7b1d schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Nb13a00b61d81445091fbf52c6d569a16 schema:name dimensions_id
95 schema:value pub.1002890759
96 rdf:type schema:PropertyValue
97 Nb9f4b916a6304516aa81ffa6a298c678 schema:familyName Breuß
98 schema:givenName Michael
99 rdf:type schema:Person
100 Nd2e1da90ff974c94ae77c20ea7a7ba0c schema:familyName Wuhrer
101 schema:givenName Stefanie
102 rdf:type schema:Person
103 Ne3dddba99fb94a308ae6b6ef9fc7e647 schema:familyName Maragos
104 schema:givenName Petros
105 rdf:type schema:Person
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
110 schema:name Artificial Intelligence and Image Processing
111 rdf:type schema:DefinedTerm
112 sg:person.012443225372.65 schema:affiliation grid-institutes:grid.5963.9
113 schema:familyName Brox
114 schema:givenName Thomas
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65
116 rdf:type schema:Person
117 sg:person.013477515133.33 schema:affiliation grid-institutes:grid.5963.9
118 schema:familyName Keuper
119 schema:givenName Margret
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013477515133.33
121 rdf:type schema:Person
122 grid-institutes:grid.5963.9 schema:alternateName University of Freiburg, Freiburg im Breisgau, Germany
123 schema:name University of Freiburg, Freiburg im Breisgau, Germany
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...