Segmentation in Point Clouds from RGB-D Using Spectral Graph Reduction View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-10-01

AUTHORS

Margret Keuper , Thomas Brox

ABSTRACT

In this chapter, we tackle the problem of segmentation in point clouds from RGB-D data. In contrast to full point clouds, RGB-D data only provides a part of the volumetric information, the depth information of the one view given in the corresponding RGB image. Still, this additional information is valuable for the segmentation task as it helps disambiguating texture gradients from structure gradients. In order to create hierarchical segmentations, we combine a state-of-the-art method for natural RGB image segmentation based on spectral graph analysis with an RGB-D boundary detector. We show that spectral graph reduction can be employed in this case, facilitating the computation of RGB-D segmentations in large datasets. More... »

PAGES

155-168

Book

TITLE

Perspectives in Shape Analysis

ISBN

978-3-319-24724-3
978-3-319-24726-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-24726-7_7

DOI

http://dx.doi.org/10.1007/978-3-319-24726-7_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002890759


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keuper", 
        "givenName": "Margret", 
        "id": "sg:person.013477515133.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013477515133.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Freiburg, Freiburg im Breisgau, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "University of Freiburg, Freiburg im Breisgau, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brox", 
        "givenName": "Thomas", 
        "id": "sg:person.012443225372.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-10-01", 
    "datePublishedReg": "2016-10-01", 
    "description": "In this chapter, we tackle the problem of segmentation in point clouds from RGB-D data. In contrast to full point clouds, RGB-D data only provides a part of the volumetric information, the depth information of the one view given in the corresponding RGB image. Still, this additional information is valuable for the segmentation task as it helps disambiguating texture gradients from structure gradients. In order to create hierarchical segmentations, we combine a state-of-the-art method for natural RGB image segmentation based on spectral graph analysis with an RGB-D boundary detector. We show that spectral graph reduction can be employed in this case, facilitating the computation of RGB-D segmentations in large datasets.", 
    "editor": [
      {
        "familyName": "Breu\u00df", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "familyName": "Bruckstein", 
        "givenName": "Alfred", 
        "type": "Person"
      }, 
      {
        "familyName": "Maragos", 
        "givenName": "Petros", 
        "type": "Person"
      }, 
      {
        "familyName": "Wuhrer", 
        "givenName": "Stefanie", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-24726-7_7", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-24724-3", 
        "978-3-319-24726-7"
      ], 
      "name": "Perspectives in Shape Analysis", 
      "type": "Book"
    }, 
    "keywords": [
      "RGB-D data", 
      "point clouds", 
      "graph reduction", 
      "RGB-D segmentation", 
      "corresponding RGB image", 
      "problem of segmentation", 
      "full point cloud", 
      "segmentation task", 
      "spectral graph analysis", 
      "image segmentation", 
      "RGB images", 
      "hierarchical segmentation", 
      "art methods", 
      "depth information", 
      "large datasets", 
      "boundary detector", 
      "segmentation", 
      "graph analysis", 
      "volumetric information", 
      "cloud", 
      "RGB", 
      "information", 
      "dataset", 
      "additional information", 
      "task", 
      "computation", 
      "images", 
      "texture gradient", 
      "data", 
      "order", 
      "method", 
      "view", 
      "detector", 
      "chapter", 
      "state", 
      "part", 
      "analysis", 
      "cases", 
      "gradient", 
      "reduction", 
      "structure gradient", 
      "contrast", 
      "problem"
    ], 
    "name": "Segmentation in Point Clouds from RGB-D Using Spectral Graph Reduction", 
    "pagination": "155-168", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002890759"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-24726-7_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-24726-7_7", 
      "https://app.dimensions.ai/details/publication/pub.1002890759"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_400.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-24726-7_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24726-7_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24726-7_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24726-7_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24726-7_7'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      22 PREDICATES      66 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-24726-7_7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N2bc8fa9d3e9648729bbbed2802a76df2
4 schema:datePublished 2016-10-01
5 schema:datePublishedReg 2016-10-01
6 schema:description In this chapter, we tackle the problem of segmentation in point clouds from RGB-D data. In contrast to full point clouds, RGB-D data only provides a part of the volumetric information, the depth information of the one view given in the corresponding RGB image. Still, this additional information is valuable for the segmentation task as it helps disambiguating texture gradients from structure gradients. In order to create hierarchical segmentations, we combine a state-of-the-art method for natural RGB image segmentation based on spectral graph analysis with an RGB-D boundary detector. We show that spectral graph reduction can be employed in this case, facilitating the computation of RGB-D segmentations in large datasets.
7 schema:editor Ne601f00b5de64090b4ed82a152dc1199
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Nce2ecc55f8034b3ca529d18421ba959c
11 schema:keywords RGB
12 RGB images
13 RGB-D data
14 RGB-D segmentation
15 additional information
16 analysis
17 art methods
18 boundary detector
19 cases
20 chapter
21 cloud
22 computation
23 contrast
24 corresponding RGB image
25 data
26 dataset
27 depth information
28 detector
29 full point cloud
30 gradient
31 graph analysis
32 graph reduction
33 hierarchical segmentation
34 image segmentation
35 images
36 information
37 large datasets
38 method
39 order
40 part
41 point clouds
42 problem
43 problem of segmentation
44 reduction
45 segmentation
46 segmentation task
47 spectral graph analysis
48 state
49 structure gradient
50 task
51 texture gradient
52 view
53 volumetric information
54 schema:name Segmentation in Point Clouds from RGB-D Using Spectral Graph Reduction
55 schema:pagination 155-168
56 schema:productId N3a1d0ba7b4ad4968a5fc595ff84b699b
57 N4f1d0acada094fe78da256a4b843419e
58 schema:publisher Nb018bca7e1064684a2079c1862f37db7
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002890759
60 https://doi.org/10.1007/978-3-319-24726-7_7
61 schema:sdDatePublished 2022-11-24T21:18
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nacf466165a8c4a8fae3306403e24a478
64 schema:url https://doi.org/10.1007/978-3-319-24726-7_7
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N2bc8fa9d3e9648729bbbed2802a76df2 rdf:first sg:person.013477515133.33
69 rdf:rest N994cbf5cfbbc4b81980dcb46304f4861
70 N3a1d0ba7b4ad4968a5fc595ff84b699b schema:name doi
71 schema:value 10.1007/978-3-319-24726-7_7
72 rdf:type schema:PropertyValue
73 N4f1d0acada094fe78da256a4b843419e schema:name dimensions_id
74 schema:value pub.1002890759
75 rdf:type schema:PropertyValue
76 N641bb1997bc749ceb83f108baf57784b schema:familyName Breuß
77 schema:givenName Michael
78 rdf:type schema:Person
79 N6a43931b3621499393d9abf78f9dfb68 rdf:first Nd75cced81d63497f9126714811cc0b72
80 rdf:rest rdf:nil
81 N7ee9a82d909343a2beb482cd76148bfe schema:familyName Maragos
82 schema:givenName Petros
83 rdf:type schema:Person
84 N994cbf5cfbbc4b81980dcb46304f4861 rdf:first sg:person.012443225372.65
85 rdf:rest rdf:nil
86 Nacf466165a8c4a8fae3306403e24a478 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nb018bca7e1064684a2079c1862f37db7 schema:name Springer Nature
89 rdf:type schema:Organisation
90 Nb477b7c53ca6402a85842426dc6bf242 schema:familyName Bruckstein
91 schema:givenName Alfred
92 rdf:type schema:Person
93 Nc09f0fb049234faba47e49e0cac01cd1 rdf:first Nb477b7c53ca6402a85842426dc6bf242
94 rdf:rest Nc86e9f312e4e40df8a32acae708c8a73
95 Nc86e9f312e4e40df8a32acae708c8a73 rdf:first N7ee9a82d909343a2beb482cd76148bfe
96 rdf:rest N6a43931b3621499393d9abf78f9dfb68
97 Nce2ecc55f8034b3ca529d18421ba959c schema:isbn 978-3-319-24724-3
98 978-3-319-24726-7
99 schema:name Perspectives in Shape Analysis
100 rdf:type schema:Book
101 Nd75cced81d63497f9126714811cc0b72 schema:familyName Wuhrer
102 schema:givenName Stefanie
103 rdf:type schema:Person
104 Ne601f00b5de64090b4ed82a152dc1199 rdf:first N641bb1997bc749ceb83f108baf57784b
105 rdf:rest Nc09f0fb049234faba47e49e0cac01cd1
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
110 schema:name Artificial Intelligence and Image Processing
111 rdf:type schema:DefinedTerm
112 sg:person.012443225372.65 schema:affiliation grid-institutes:grid.5963.9
113 schema:familyName Brox
114 schema:givenName Thomas
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65
116 rdf:type schema:Person
117 sg:person.013477515133.33 schema:affiliation grid-institutes:grid.5963.9
118 schema:familyName Keuper
119 schema:givenName Margret
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013477515133.33
121 rdf:type schema:Person
122 grid-institutes:grid.5963.9 schema:alternateName University of Freiburg, Freiburg im Breisgau, Germany
123 schema:name University of Freiburg, Freiburg im Breisgau, Germany
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...