Shape Distances for Binary Image Segmentation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-10-01

AUTHORS

Frank R. Schmidt , Lena Gorelick , Ismail Ben Ayed , Yuri Boykov , Thomas Brox

ABSTRACT

Shape distances are an important measure to guide the task of shape classification. In this chapter we show that the right choice of shape similarity is also important for the task of image segmentation, even at the absence of any shape prior. To this end, we will study three different shape distances and explore how well they can be used in a trust region framework. In particular, we explore which distance can be easily incorporated into trust region optimization and how well these distances work for theoretical and practical examples. More... »

PAGES

137-154

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-24726-7_6

DOI

http://dx.doi.org/10.1007/978-3-319-24726-7_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034231875


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Georges-K\u00f6hler Allee 52, Freiburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Georges-K\u00f6hler Allee 52, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Frank R.", 
        "id": "sg:person.010210212666.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010210212666.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Department, University of Western Ontario, London, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.39381.30", 
          "name": [
            "Computer Science Department, University of Western Ontario, London, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gorelick", 
        "givenName": "Lena", 
        "id": "sg:person.014200717425.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014200717425.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole de Technologie Sup\u00e9rieure, University of Quebec, Montreal, QC, Canada", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "\u00c9cole de Technologie Sup\u00e9rieure, University of Quebec, Montreal, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ayed", 
        "givenName": "Ismail Ben", 
        "id": "sg:person.015372224215.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015372224215.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Department, University of Western Ontario, London, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.39381.30", 
          "name": [
            "Computer Science Department, University of Western Ontario, London, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boykov", 
        "givenName": "Yuri", 
        "id": "sg:person.01316425052.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316425052.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Georges-K\u00f6hler Allee 52, Freiburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Georges-K\u00f6hler Allee 52, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brox", 
        "givenName": "Thomas", 
        "id": "sg:person.012443225372.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-10-01", 
    "datePublishedReg": "2016-10-01", 
    "description": "Shape distances are an important measure to guide the task of shape classification. In this chapter we show that the right choice of shape similarity is also important for the task of image segmentation, even at the absence of any shape prior. To this end, we will study three different shape distances and explore how well they can be used in a trust region framework. In particular, we explore which distance can be easily incorporated into trust region optimization and how well these distances work for theoretical and practical examples.", 
    "editor": [
      {
        "familyName": "Breu\u00df", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "familyName": "Bruckstein", 
        "givenName": "Alfred", 
        "type": "Person"
      }, 
      {
        "familyName": "Maragos", 
        "givenName": "Petros", 
        "type": "Person"
      }, 
      {
        "familyName": "Wuhrer", 
        "givenName": "Stefanie", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-24726-7_6", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-24724-3", 
        "978-3-319-24726-7"
      ], 
      "name": "Perspectives in Shape Analysis", 
      "type": "Book"
    }, 
    "keywords": [
      "image segmentation", 
      "binary image segmentation", 
      "shape distance", 
      "shape classification", 
      "trust region optimization", 
      "shape similarity", 
      "segmentation", 
      "region optimization", 
      "task", 
      "practical examples", 
      "trust-region framework", 
      "right choice", 
      "classification", 
      "framework", 
      "optimization", 
      "region framework", 
      "important measure", 
      "distance", 
      "example", 
      "similarity", 
      "end", 
      "chapter", 
      "choice", 
      "shape", 
      "measures", 
      "absence"
    ], 
    "name": "Shape Distances for Binary Image Segmentation", 
    "pagination": "137-154", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034231875"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-24726-7_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-24726-7_6", 
      "https://app.dimensions.ai/details/publication/pub.1034231875"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_150.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-24726-7_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24726-7_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24726-7_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24726-7_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24726-7_6'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      22 PREDICATES      49 URIs      42 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-24726-7_6 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N08784ee0cffa484488b803f4b4ff2a6f
4 schema:datePublished 2016-10-01
5 schema:datePublishedReg 2016-10-01
6 schema:description Shape distances are an important measure to guide the task of shape classification. In this chapter we show that the right choice of shape similarity is also important for the task of image segmentation, even at the absence of any shape prior. To this end, we will study three different shape distances and explore how well they can be used in a trust region framework. In particular, we explore which distance can be easily incorporated into trust region optimization and how well these distances work for theoretical and practical examples.
7 schema:editor N3965bcdb13674b04861b75764dfe1c06
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N06c263ef96bc4560a9e3d44119fafe21
11 schema:keywords absence
12 binary image segmentation
13 chapter
14 choice
15 classification
16 distance
17 end
18 example
19 framework
20 image segmentation
21 important measure
22 measures
23 optimization
24 practical examples
25 region framework
26 region optimization
27 right choice
28 segmentation
29 shape
30 shape classification
31 shape distance
32 shape similarity
33 similarity
34 task
35 trust region optimization
36 trust-region framework
37 schema:name Shape Distances for Binary Image Segmentation
38 schema:pagination 137-154
39 schema:productId N3ce6cc5b76e6472fb4ef6f0885541887
40 N48683e74998847709da15d8e67bfb404
41 schema:publisher N0adb5a6dc31345599654e2e4a2335668
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034231875
43 https://doi.org/10.1007/978-3-319-24726-7_6
44 schema:sdDatePublished 2022-12-01T06:47
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N22cc1d1727424cbc90c3ddd748aa3788
47 schema:url https://doi.org/10.1007/978-3-319-24726-7_6
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N05b48e66819c4fc7b4eb44c612a41faa rdf:first N46f68f8756a24427b20b05679d625b11
52 rdf:rest rdf:nil
53 N06c263ef96bc4560a9e3d44119fafe21 schema:isbn 978-3-319-24724-3
54 978-3-319-24726-7
55 schema:name Perspectives in Shape Analysis
56 rdf:type schema:Book
57 N08784ee0cffa484488b803f4b4ff2a6f rdf:first sg:person.010210212666.67
58 rdf:rest N0b6a81ee41794c8e961e2e259e164020
59 N0adb5a6dc31345599654e2e4a2335668 schema:name Springer Nature
60 rdf:type schema:Organisation
61 N0b6a81ee41794c8e961e2e259e164020 rdf:first sg:person.014200717425.27
62 rdf:rest Na61ad9a8b9604929bf4550f292c4b551
63 N0d8a225f47b741a3920dacb76a8d71f8 rdf:first sg:person.01316425052.84
64 rdf:rest Nc0a9dd6d4bdf47968b1ed2dfb238c7ea
65 N22cc1d1727424cbc90c3ddd748aa3788 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N3965bcdb13674b04861b75764dfe1c06 rdf:first N48118a15c71c4b4ea79d90951a4426c7
68 rdf:rest Nb3f7efad1ea74511926f9ee910659165
69 N3ce6cc5b76e6472fb4ef6f0885541887 schema:name dimensions_id
70 schema:value pub.1034231875
71 rdf:type schema:PropertyValue
72 N46f68f8756a24427b20b05679d625b11 schema:familyName Wuhrer
73 schema:givenName Stefanie
74 rdf:type schema:Person
75 N48118a15c71c4b4ea79d90951a4426c7 schema:familyName Breuß
76 schema:givenName Michael
77 rdf:type schema:Person
78 N48683e74998847709da15d8e67bfb404 schema:name doi
79 schema:value 10.1007/978-3-319-24726-7_6
80 rdf:type schema:PropertyValue
81 N6cbc1401c1a94d399ef8ce08ded26e84 schema:familyName Bruckstein
82 schema:givenName Alfred
83 rdf:type schema:Person
84 N982156998ba94fc58c4883506c90123d rdf:first Nd448766bbc494893878c7033d0a99d84
85 rdf:rest N05b48e66819c4fc7b4eb44c612a41faa
86 Na61ad9a8b9604929bf4550f292c4b551 rdf:first sg:person.015372224215.29
87 rdf:rest N0d8a225f47b741a3920dacb76a8d71f8
88 Nb3f7efad1ea74511926f9ee910659165 rdf:first N6cbc1401c1a94d399ef8ce08ded26e84
89 rdf:rest N982156998ba94fc58c4883506c90123d
90 Nc0a9dd6d4bdf47968b1ed2dfb238c7ea rdf:first sg:person.012443225372.65
91 rdf:rest rdf:nil
92 Nd448766bbc494893878c7033d0a99d84 schema:familyName Maragos
93 schema:givenName Petros
94 rdf:type schema:Person
95 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
96 schema:name Psychology and Cognitive Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
99 schema:name Psychology
100 rdf:type schema:DefinedTerm
101 sg:person.010210212666.67 schema:affiliation grid-institutes:grid.5963.9
102 schema:familyName Schmidt
103 schema:givenName Frank R.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010210212666.67
105 rdf:type schema:Person
106 sg:person.012443225372.65 schema:affiliation grid-institutes:grid.5963.9
107 schema:familyName Brox
108 schema:givenName Thomas
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65
110 rdf:type schema:Person
111 sg:person.01316425052.84 schema:affiliation grid-institutes:grid.39381.30
112 schema:familyName Boykov
113 schema:givenName Yuri
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316425052.84
115 rdf:type schema:Person
116 sg:person.014200717425.27 schema:affiliation grid-institutes:grid.39381.30
117 schema:familyName Gorelick
118 schema:givenName Lena
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014200717425.27
120 rdf:type schema:Person
121 sg:person.015372224215.29 schema:affiliation grid-institutes:None
122 schema:familyName Ayed
123 schema:givenName Ismail Ben
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015372224215.29
125 rdf:type schema:Person
126 grid-institutes:None schema:alternateName École de Technologie Supérieure, University of Quebec, Montreal, QC, Canada
127 schema:name École de Technologie Supérieure, University of Quebec, Montreal, QC, Canada
128 rdf:type schema:Organization
129 grid-institutes:grid.39381.30 schema:alternateName Computer Science Department, University of Western Ontario, London, ON, Canada
130 schema:name Computer Science Department, University of Western Ontario, London, ON, Canada
131 rdf:type schema:Organization
132 grid-institutes:grid.5963.9 schema:alternateName Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Georges-Köhler Allee 52, Freiburg, Germany
133 schema:name Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Georges-Köhler Allee 52, Freiburg, Germany
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...