Ontology type: schema:Chapter Open Access: True
2015-11-18
AUTHORSOlaf Ronneberger , Philipp Fischer , Thomas Brox
ABSTRACTThere is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net. More... »
PAGES234-241
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015
ISBN
978-3-319-24573-7
978-3-319-24574-4
http://scigraph.springernature.com/pub.10.1007/978-3-319-24574-4_28
DOIhttp://dx.doi.org/10.1007/978-3-319-24574-4_28
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1017774818
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany",
"id": "http://www.grid.ac/institutes/grid.5963.9",
"name": [
"Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany"
],
"type": "Organization"
},
"familyName": "Ronneberger",
"givenName": "Olaf",
"id": "sg:person.0625370723.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625370723.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany",
"id": "http://www.grid.ac/institutes/grid.5963.9",
"name": [
"Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany"
],
"type": "Organization"
},
"familyName": "Fischer",
"givenName": "Philipp",
"id": "sg:person.012106015125.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106015125.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany",
"id": "http://www.grid.ac/institutes/grid.5963.9",
"name": [
"Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany"
],
"type": "Organization"
},
"familyName": "Brox",
"givenName": "Thomas",
"id": "sg:person.012443225372.65",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65"
],
"type": "Person"
}
],
"datePublished": "2015-11-18",
"datePublishedReg": "2015-11-18",
"description": "There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.",
"editor": [
{
"familyName": "Navab",
"givenName": "Nassir",
"type": "Person"
},
{
"familyName": "Hornegger",
"givenName": "Joachim",
"type": "Person"
},
{
"familyName": "Wells",
"givenName": "William M.",
"type": "Person"
},
{
"familyName": "Frangi",
"givenName": "Alejandro F.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-24574-4_28",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-319-24573-7",
"978-3-319-24574-4"
],
"name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015",
"type": "Book"
},
"keywords": [
"biomedical image segmentation",
"deep network",
"convolutional network",
"data augmentation",
"ISBI challenge",
"contracting path",
"image segmentation",
"recent GPU",
"training samples",
"large margin",
"same network",
"segmentation",
"network",
"training strategy",
"prior best method",
"successful training",
"images",
"strong use",
"light microscopy images",
"GPU",
"full implementation",
"nets",
"architecture",
"path",
"precise localization",
"implementation",
"best method",
"stack",
"challenges",
"microscopy images",
"training",
"context",
"end",
"method",
"augmentation",
"localization",
"strategies",
"use",
"categories",
"neuronal structures",
"structure",
"Freiburg",
"margin",
"consent",
"samples",
"paper"
],
"name": "U-Net: Convolutional Networks for Biomedical Image Segmentation",
"pagination": "234-241",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1017774818"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-24574-4_28"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-24574-4_28",
"https://app.dimensions.ai/details/publication/pub.1017774818"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_161.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-24574-4_28"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24574-4_28'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24574-4_28'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24574-4_28'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24574-4_28'
This table displays all metadata directly associated to this object as RDF triples.
135 TRIPLES
23 PREDICATES
71 URIs
64 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-24574-4_28 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | Nbc16900b8d5e4493a8a46f2a42d19d65 |
4 | ″ | schema:datePublished | 2015-11-18 |
5 | ″ | schema:datePublishedReg | 2015-11-18 |
6 | ″ | schema:description | There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net. |
7 | ″ | schema:editor | N3ad45aced6544361aecf5253e02b1be7 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N05c7fa12cdfd41b4889a1d6907f86808 |
12 | ″ | schema:keywords | Freiburg |
13 | ″ | ″ | GPU |
14 | ″ | ″ | ISBI challenge |
15 | ″ | ″ | architecture |
16 | ″ | ″ | augmentation |
17 | ″ | ″ | best method |
18 | ″ | ″ | biomedical image segmentation |
19 | ″ | ″ | categories |
20 | ″ | ″ | challenges |
21 | ″ | ″ | consent |
22 | ″ | ″ | context |
23 | ″ | ″ | contracting path |
24 | ″ | ″ | convolutional network |
25 | ″ | ″ | data augmentation |
26 | ″ | ″ | deep network |
27 | ″ | ″ | end |
28 | ″ | ″ | full implementation |
29 | ″ | ″ | image segmentation |
30 | ″ | ″ | images |
31 | ″ | ″ | implementation |
32 | ″ | ″ | large margin |
33 | ″ | ″ | light microscopy images |
34 | ″ | ″ | localization |
35 | ″ | ″ | margin |
36 | ″ | ″ | method |
37 | ″ | ″ | microscopy images |
38 | ″ | ″ | nets |
39 | ″ | ″ | network |
40 | ″ | ″ | neuronal structures |
41 | ″ | ″ | paper |
42 | ″ | ″ | path |
43 | ″ | ″ | precise localization |
44 | ″ | ″ | prior best method |
45 | ″ | ″ | recent GPU |
46 | ″ | ″ | same network |
47 | ″ | ″ | samples |
48 | ″ | ″ | segmentation |
49 | ″ | ″ | stack |
50 | ″ | ″ | strategies |
51 | ″ | ″ | strong use |
52 | ″ | ″ | structure |
53 | ″ | ″ | successful training |
54 | ″ | ″ | training |
55 | ″ | ″ | training samples |
56 | ″ | ″ | training strategy |
57 | ″ | ″ | use |
58 | ″ | schema:name | U-Net: Convolutional Networks for Biomedical Image Segmentation |
59 | ″ | schema:pagination | 234-241 |
60 | ″ | schema:productId | N4ab5c1918b2d41818731bda40e3accb0 |
61 | ″ | ″ | N5995a5c0879f463c89bb97d8f7e330a1 |
62 | ″ | schema:publisher | Nf2870d6a1b7340c9951ea77f8dac5374 |
63 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017774818 |
64 | ″ | ″ | https://doi.org/10.1007/978-3-319-24574-4_28 |
65 | ″ | schema:sdDatePublished | 2022-05-10T10:39 |
66 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
67 | ″ | schema:sdPublisher | N66d0888e6df14e2786b94ef84285294d |
68 | ″ | schema:url | https://doi.org/10.1007/978-3-319-24574-4_28 |
69 | ″ | sgo:license | sg:explorer/license/ |
70 | ″ | sgo:sdDataset | chapters |
71 | ″ | rdf:type | schema:Chapter |
72 | N05c7fa12cdfd41b4889a1d6907f86808 | schema:isbn | 978-3-319-24573-7 |
73 | ″ | ″ | 978-3-319-24574-4 |
74 | ″ | schema:name | Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 |
75 | ″ | rdf:type | schema:Book |
76 | N0df30cbc5d874beaa7b33abcccbae96b | rdf:first | Nb69330d16edb446ea891de795bd14579 |
77 | ″ | rdf:rest | Nf82e0d7f59b34ed0a6ce9747088d9c2c |
78 | N20d0a2774c934d18a7f41925cf69d398 | schema:familyName | Wells |
79 | ″ | schema:givenName | William M. |
80 | ″ | rdf:type | schema:Person |
81 | N225266ba6c0b4b7ba2366f47ad3f3d0b | rdf:first | sg:person.012443225372.65 |
82 | ″ | rdf:rest | rdf:nil |
83 | N2f556b8a0e4f443abc4ac3cac5c6e1cc | schema:familyName | Navab |
84 | ″ | schema:givenName | Nassir |
85 | ″ | rdf:type | schema:Person |
86 | N3ad45aced6544361aecf5253e02b1be7 | rdf:first | N2f556b8a0e4f443abc4ac3cac5c6e1cc |
87 | ″ | rdf:rest | N0df30cbc5d874beaa7b33abcccbae96b |
88 | N4ab5c1918b2d41818731bda40e3accb0 | schema:name | dimensions_id |
89 | ″ | schema:value | pub.1017774818 |
90 | ″ | rdf:type | schema:PropertyValue |
91 | N5995a5c0879f463c89bb97d8f7e330a1 | schema:name | doi |
92 | ″ | schema:value | 10.1007/978-3-319-24574-4_28 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | N5d1f05b25f6f4e7c94ae77060c303744 | rdf:first | sg:person.012106015125.15 |
95 | ″ | rdf:rest | N225266ba6c0b4b7ba2366f47ad3f3d0b |
96 | N66d0888e6df14e2786b94ef84285294d | schema:name | Springer Nature - SN SciGraph project |
97 | ″ | rdf:type | schema:Organization |
98 | N84a2f84bbac84ecaba9ccb4b7e91ef91 | schema:familyName | Frangi |
99 | ″ | schema:givenName | Alejandro F. |
100 | ″ | rdf:type | schema:Person |
101 | Nb0ffe1af4c7c45d78752fff13b033677 | rdf:first | N84a2f84bbac84ecaba9ccb4b7e91ef91 |
102 | ″ | rdf:rest | rdf:nil |
103 | Nb69330d16edb446ea891de795bd14579 | schema:familyName | Hornegger |
104 | ″ | schema:givenName | Joachim |
105 | ″ | rdf:type | schema:Person |
106 | Nbc16900b8d5e4493a8a46f2a42d19d65 | rdf:first | sg:person.0625370723.52 |
107 | ″ | rdf:rest | N5d1f05b25f6f4e7c94ae77060c303744 |
108 | Nf2870d6a1b7340c9951ea77f8dac5374 | schema:name | Springer Nature |
109 | ″ | rdf:type | schema:Organisation |
110 | Nf82e0d7f59b34ed0a6ce9747088d9c2c | rdf:first | N20d0a2774c934d18a7f41925cf69d398 |
111 | ″ | rdf:rest | Nb0ffe1af4c7c45d78752fff13b033677 |
112 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Information and Computing Sciences |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Artificial Intelligence and Image Processing |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | sg:person.012106015125.15 | schema:affiliation | grid-institutes:grid.5963.9 |
119 | ″ | schema:familyName | Fischer |
120 | ″ | schema:givenName | Philipp |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106015125.15 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.012443225372.65 | schema:affiliation | grid-institutes:grid.5963.9 |
124 | ″ | schema:familyName | Brox |
125 | ″ | schema:givenName | Thomas |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.0625370723.52 | schema:affiliation | grid-institutes:grid.5963.9 |
129 | ″ | schema:familyName | Ronneberger |
130 | ″ | schema:givenName | Olaf |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625370723.52 |
132 | ″ | rdf:type | schema:Person |
133 | grid-institutes:grid.5963.9 | schema:alternateName | Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany |
134 | ″ | schema:name | Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany |
135 | ″ | rdf:type | schema:Organization |