U-Net: Convolutional Networks for Biomedical Image Segmentation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2015

AUTHORS

Olaf Ronneberger , Philipp Fischer , Thomas Brox

ABSTRACT

There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net . More... »

PAGES

234-241

Book

TITLE

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015

ISBN

978-3-319-24573-7
978-3-319-24574-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-24574-4_28

DOI

http://dx.doi.org/10.1007/978-3-319-24574-4_28

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017774818


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ronneberger", 
        "givenName": "Olaf", 
        "id": "sg:person.0625370723.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625370723.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fischer", 
        "givenName": "Philipp", 
        "id": "sg:person.012106015125.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106015125.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brox", 
        "givenName": "Thomas", 
        "id": "sg:person.012443225372.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/neco.1989.1.4.541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008345178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018267701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1000502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037466020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2647868.2654889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052031051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2013.269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079004280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093626237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2015.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093828312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095686079"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .", 
    "editor": [
      {
        "familyName": "Navab", 
        "givenName": "Nassir", 
        "type": "Person"
      }, 
      {
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "familyName": "Wells", 
        "givenName": "William M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Frangi", 
        "givenName": "Alejandro F.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-24574-4_28", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-24573-7", 
        "978-3-319-24574-4"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015", 
      "type": "Book"
    }, 
    "name": "U-Net: Convolutional Networks for Biomedical Image Segmentation", 
    "pagination": "234-241", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-24574-4_28"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "54b0c42b42b8589e4e47cb7de95064f16751a7d529f6fa6c8182c4cd5a015c29"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017774818"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-24574-4_28", 
      "https://app.dimensions.ai/details/publication/pub.1017774818"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000254.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-24574-4_28"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24574-4_28'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24574-4_28'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24574-4_28'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24574-4_28'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-24574-4_28 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N27339ecfdb0d48188e7192d0f812e70b
4 schema:citation https://doi.org/10.1093/bioinformatics/btu080
5 https://doi.org/10.1109/cvpr.2015.7298642
6 https://doi.org/10.1109/cvpr.2015.7298965
7 https://doi.org/10.1109/iccv.2013.269
8 https://doi.org/10.1109/iccv.2015.123
9 https://doi.org/10.1145/2647868.2654889
10 https://doi.org/10.1162/neco.1989.1.4.541
11 https://doi.org/10.1371/journal.pbio.1000502
12 schema:datePublished 2015
13 schema:datePublishedReg 2015-01-01
14 schema:description There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .
15 schema:editor N7f769b96eae94cbc955f89a4175b676b
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf Nefcaff3f81ba41cea5ac8223d9b99cff
20 schema:name U-Net: Convolutional Networks for Biomedical Image Segmentation
21 schema:pagination 234-241
22 schema:productId N2fa921d2228b4ac880328fffd359e333
23 Nd2328929ea1c4fb1bfe4b46a126af8ec
24 Nf32c1f0e8e6b43898ad2076fc5a49473
25 schema:publisher Nf60762693b714dd38e7269998ee936e0
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017774818
27 https://doi.org/10.1007/978-3-319-24574-4_28
28 schema:sdDatePublished 2019-04-15T19:08
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nd34f5700649643cc99c79318aa2c354d
31 schema:url http://link.springer.com/10.1007/978-3-319-24574-4_28
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N133c7c77b5764728ba86afbcaa6aa916 schema:familyName Frangi
36 schema:givenName Alejandro F.
37 rdf:type schema:Person
38 N23553eb35f2c4a60ab286bbf8faf182c rdf:first N880bda2200604f4b9d7aaa96daaad9a6
39 rdf:rest N8e835eba4e2440ca90fdb3f63d848319
40 N27339ecfdb0d48188e7192d0f812e70b rdf:first sg:person.0625370723.52
41 rdf:rest Neb1d2d6f15454647a822369e4fb3ccd7
42 N2ef20bc5b06446748de93e0110a05a4c schema:name Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg
43 rdf:type schema:Organization
44 N2fa921d2228b4ac880328fffd359e333 schema:name dimensions_id
45 schema:value pub.1017774818
46 rdf:type schema:PropertyValue
47 N43c146bbda55425d802d78271c680370 rdf:first N133c7c77b5764728ba86afbcaa6aa916
48 rdf:rest rdf:nil
49 N74318f6a85db47f4bcba2bc4e020c1f2 schema:name Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg
50 rdf:type schema:Organization
51 N7f769b96eae94cbc955f89a4175b676b rdf:first N95b626e87ac24cb6a9ce5fec91db0c4d
52 rdf:rest N23553eb35f2c4a60ab286bbf8faf182c
53 N880bda2200604f4b9d7aaa96daaad9a6 schema:familyName Hornegger
54 schema:givenName Joachim
55 rdf:type schema:Person
56 N8e835eba4e2440ca90fdb3f63d848319 rdf:first Ne64ac742dfd94937ac69e55c6091fd5a
57 rdf:rest N43c146bbda55425d802d78271c680370
58 N95b626e87ac24cb6a9ce5fec91db0c4d schema:familyName Navab
59 schema:givenName Nassir
60 rdf:type schema:Person
61 Na606c7d443544fdd8f641c822806093b schema:name Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg
62 rdf:type schema:Organization
63 Nb60f7dd8dcb4482c87160095c83ecad1 rdf:first sg:person.012443225372.65
64 rdf:rest rdf:nil
65 Nd2328929ea1c4fb1bfe4b46a126af8ec schema:name readcube_id
66 schema:value 54b0c42b42b8589e4e47cb7de95064f16751a7d529f6fa6c8182c4cd5a015c29
67 rdf:type schema:PropertyValue
68 Nd34f5700649643cc99c79318aa2c354d schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Ne64ac742dfd94937ac69e55c6091fd5a schema:familyName Wells
71 schema:givenName William M.
72 rdf:type schema:Person
73 Neb1d2d6f15454647a822369e4fb3ccd7 rdf:first sg:person.012106015125.15
74 rdf:rest Nb60f7dd8dcb4482c87160095c83ecad1
75 Nefcaff3f81ba41cea5ac8223d9b99cff schema:isbn 978-3-319-24573-7
76 978-3-319-24574-4
77 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015
78 rdf:type schema:Book
79 Nf32c1f0e8e6b43898ad2076fc5a49473 schema:name doi
80 schema:value 10.1007/978-3-319-24574-4_28
81 rdf:type schema:PropertyValue
82 Nf60762693b714dd38e7269998ee936e0 schema:location Cham
83 schema:name Springer International Publishing
84 rdf:type schema:Organisation
85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information and Computing Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
89 schema:name Artificial Intelligence and Image Processing
90 rdf:type schema:DefinedTerm
91 sg:person.012106015125.15 schema:affiliation Na606c7d443544fdd8f641c822806093b
92 schema:familyName Fischer
93 schema:givenName Philipp
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106015125.15
95 rdf:type schema:Person
96 sg:person.012443225372.65 schema:affiliation N2ef20bc5b06446748de93e0110a05a4c
97 schema:familyName Brox
98 schema:givenName Thomas
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65
100 rdf:type schema:Person
101 sg:person.0625370723.52 schema:affiliation N74318f6a85db47f4bcba2bc4e020c1f2
102 schema:familyName Ronneberger
103 schema:givenName Olaf
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625370723.52
105 rdf:type schema:Person
106 https://doi.org/10.1093/bioinformatics/btu080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018267701
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/cvpr.2015.7298642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095686079
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/cvpr.2015.7298965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093626237
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/iccv.2013.269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079004280
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/iccv.2015.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093828312
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1145/2647868.2654889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052031051
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1162/neco.1989.1.4.541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008345178
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1371/journal.pbio.1000502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037466020
121 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...