Vito – A Generic Agent for Multi-physics Model Personalization: Application to Heart Modeling View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-11-20

AUTHORS

Dominik Neumann , Tommaso Mansi , Lucian Itu , Bogdan Georgescu , Elham Kayvanpour , Farbod Sedaghat-Hamedani , Jan Haas , Hugo Katus , Benjamin Meder , Stefan Steidl , Joachim Hornegger , Dorin Comaniciu

ABSTRACT

Precise estimation of computational physiological model parameters from patient data is one of the main hurdles towards their clinical applicability. Designing robust estimation algorithms is often a tedious and model-specific process. We propose to use, for the first time to our knowledge, artificial intelligence (AI) concepts to learn how to personalize a computational model, inspired by how an expert manually personalizes. We reformulate the parameter estimation problem in terms of Markov decision process and reinforcement learning. In an off-line phase, the artificial agent, called Vito, automatically learns a representative state-action-state model through data-driven exploration of the computational model under consideration. In other words, Vito learns how the model behaves under change of parameters and how to personalize it. Vito then controls the on-line personalization by exploiting its automatically derived action policy. Because the algorithm is model-independent, personalizing a completely new model would require only adjusting some simple parameters of the agent and defining the observations to match, without the full knowledge of the model itself. Vito was evaluated on two challenging problems: the inverse problem of cardiac electrophysiology and the personalization of a lumped-parameter whole-body circulation model. Obtained results suggested that Vito could achieve equivalent goodness of fit than standard methods, while being more robust (up to 25% higher success rates) and with faster (up to three times) convergence rate. Our AI approach could thus make model personalization algorithms generalizable and self-adaptable to any patient, like a human operator. More... »

PAGES

442-449

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-24571-3_53

DOI

http://dx.doi.org/10.1007/978-3-319-24571-3_53

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021020566


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
            "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neumann", 
        "givenName": "Dominik", 
        "id": "sg:person.01054566020.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054566020.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansi", 
        "givenName": "Tommaso", 
        "id": "sg:person.01217474726.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Chennai, Romania", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Chennai, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Itu", 
        "givenName": "Lucian", 
        "id": "sg:person.0656135130.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656135130.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kayvanpour", 
        "givenName": "Elham", 
        "id": "sg:person.01201613000.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201613000.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedaghat-Hamedani", 
        "givenName": "Farbod", 
        "id": "sg:person.01247726200.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247726200.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haas", 
        "givenName": "Jan", 
        "id": "sg:person.01173725567.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173725567.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katus", 
        "givenName": "Hugo", 
        "id": "sg:person.011260235657.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260235657.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5253.1", 
          "name": [
            "Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meder", 
        "givenName": "Benjamin", 
        "id": "sg:person.01027273360.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027273360.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steidl", 
        "givenName": "Stefan", 
        "id": "sg:person.016410041115.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016410041115.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Pattern Recognition Lab, FAU Erlangen-N\u00fcrnberg, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "id": "sg:person.01322323610.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-11-20", 
    "datePublishedReg": "2015-11-20", 
    "description": "Precise estimation of computational physiological model parameters from patient data is one of the main hurdles towards their clinical applicability. Designing robust estimation algorithms is often a tedious and model-specific process. We propose to use, for the first time to our knowledge, artificial intelligence (AI) concepts to learn how to personalize a computational model, inspired by how an expert manually personalizes. We reformulate the parameter estimation problem in terms of Markov decision process and reinforcement learning. In an off-line phase, the artificial agent, called Vito, automatically learns a representative state-action-state model through data-driven exploration of the computational model under consideration. In other words, Vito learns how the model behaves under change of parameters and how to personalize it. Vito then controls the on-line personalization by exploiting its automatically derived action policy. Because the algorithm is model-independent, personalizing a completely new model would require only adjusting some simple parameters of the agent and defining the observations to match, without the full knowledge of the model itself. Vito was evaluated on two challenging problems: the inverse problem of cardiac electrophysiology and the personalization of a lumped-parameter whole-body circulation model. Obtained results suggested that Vito could achieve equivalent goodness of fit than standard methods, while being more robust (up to 25% higher success rates) and with faster (up to three times) convergence rate. Our AI approach could thus make model personalization algorithms generalizable and self-adaptable to any patient, like a human operator.", 
    "editor": [
      {
        "familyName": "Navab", 
        "givenName": "Nassir", 
        "type": "Person"
      }, 
      {
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "familyName": "Wells", 
        "givenName": "William M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Frangi", 
        "givenName": "Alejandro", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-24571-3_53", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-24570-6", 
        "978-3-319-24571-3"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015", 
      "type": "Book"
    }, 
    "keywords": [
      "artificial intelligence concepts", 
      "robust estimation algorithm", 
      "computational model", 
      "Markov decision process", 
      "faster convergence rate", 
      "data-driven exploration", 
      "intelligence concepts", 
      "personalization algorithm", 
      "AI approach", 
      "human operator", 
      "reinforcement learning", 
      "artificial agents", 
      "model personalization", 
      "line personalization", 
      "estimation algorithm", 
      "generic agents", 
      "heart modeling", 
      "line phase", 
      "personalization", 
      "parameter estimation problem", 
      "algorithm", 
      "estimation problem", 
      "decision process", 
      "full knowledge", 
      "convergence rate", 
      "patient data", 
      "main hurdles", 
      "equivalent goodness", 
      "action policies", 
      "inverse problem", 
      "change of parameters", 
      "model parameters", 
      "new model", 
      "physiological model parameters", 
      "learning", 
      "precise estimation", 
      "model", 
      "experts", 
      "knowledge", 
      "simple parameters", 
      "operators", 
      "applications", 
      "estimation", 
      "state model", 
      "modeling", 
      "applicability", 
      "concept", 
      "cardiac electrophysiology", 
      "exploration", 
      "process", 
      "words", 
      "standard methods", 
      "parameters", 
      "method", 
      "Vito", 
      "hurdles", 
      "data", 
      "terms", 
      "goodness", 
      "agents", 
      "time", 
      "use", 
      "results", 
      "consideration", 
      "policy", 
      "clinical applicability", 
      "phase", 
      "first time", 
      "fit", 
      "rate", 
      "observations", 
      "changes", 
      "electrophysiology", 
      "circulation model", 
      "patients", 
      "problem", 
      "approach", 
      "computational physiological model parameters", 
      "model-specific process", 
      "lumped-parameter whole-body circulation model", 
      "whole-body circulation model", 
      "model personalization algorithms", 
      "Multi-physics Model Personalization"
    ], 
    "name": "Vito \u2013 A Generic Agent for Multi-physics Model Personalization: Application to Heart Modeling", 
    "pagination": "442-449", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021020566"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-24571-3_53"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-24571-3_53", 
      "https://app.dimensions.ai/details/publication/pub.1021020566"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_162.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-24571-3_53"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24571-3_53'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24571-3_53'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24571-3_53'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24571-3_53'


 

This table displays all metadata directly associated to this object as RDF triples.

244 TRIPLES      23 PREDICATES      108 URIs      101 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-24571-3_53 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N715bc82604a24c2ab5f38371358dee50
4 schema:datePublished 2015-11-20
5 schema:datePublishedReg 2015-11-20
6 schema:description Precise estimation of computational physiological model parameters from patient data is one of the main hurdles towards their clinical applicability. Designing robust estimation algorithms is often a tedious and model-specific process. We propose to use, for the first time to our knowledge, artificial intelligence (AI) concepts to learn how to personalize a computational model, inspired by how an expert manually personalizes. We reformulate the parameter estimation problem in terms of Markov decision process and reinforcement learning. In an off-line phase, the artificial agent, called Vito, automatically learns a representative state-action-state model through data-driven exploration of the computational model under consideration. In other words, Vito learns how the model behaves under change of parameters and how to personalize it. Vito then controls the on-line personalization by exploiting its automatically derived action policy. Because the algorithm is model-independent, personalizing a completely new model would require only adjusting some simple parameters of the agent and defining the observations to match, without the full knowledge of the model itself. Vito was evaluated on two challenging problems: the inverse problem of cardiac electrophysiology and the personalization of a lumped-parameter whole-body circulation model. Obtained results suggested that Vito could achieve equivalent goodness of fit than standard methods, while being more robust (up to 25% higher success rates) and with faster (up to three times) convergence rate. Our AI approach could thus make model personalization algorithms generalizable and self-adaptable to any patient, like a human operator.
7 schema:editor Nca1f2836d96642d6803b396056b07a1b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N0d315cc38608487d8f19d02f09883c2a
12 schema:keywords AI approach
13 Markov decision process
14 Multi-physics Model Personalization
15 Vito
16 action policies
17 agents
18 algorithm
19 applicability
20 applications
21 approach
22 artificial agents
23 artificial intelligence concepts
24 cardiac electrophysiology
25 change of parameters
26 changes
27 circulation model
28 clinical applicability
29 computational model
30 computational physiological model parameters
31 concept
32 consideration
33 convergence rate
34 data
35 data-driven exploration
36 decision process
37 electrophysiology
38 equivalent goodness
39 estimation
40 estimation algorithm
41 estimation problem
42 experts
43 exploration
44 faster convergence rate
45 first time
46 fit
47 full knowledge
48 generic agents
49 goodness
50 heart modeling
51 human operator
52 hurdles
53 intelligence concepts
54 inverse problem
55 knowledge
56 learning
57 line personalization
58 line phase
59 lumped-parameter whole-body circulation model
60 main hurdles
61 method
62 model
63 model parameters
64 model personalization
65 model personalization algorithms
66 model-specific process
67 modeling
68 new model
69 observations
70 operators
71 parameter estimation problem
72 parameters
73 patient data
74 patients
75 personalization
76 personalization algorithm
77 phase
78 physiological model parameters
79 policy
80 precise estimation
81 problem
82 process
83 rate
84 reinforcement learning
85 results
86 robust estimation algorithm
87 simple parameters
88 standard methods
89 state model
90 terms
91 time
92 use
93 whole-body circulation model
94 words
95 schema:name Vito – A Generic Agent for Multi-physics Model Personalization: Application to Heart Modeling
96 schema:pagination 442-449
97 schema:productId N6f26f6c85e544ba688cfcd753298c616
98 N9e0eec7bdcc446048b25f612ad15bbbb
99 schema:publisher N342329aeb9a74d1dbc23843f2c69628f
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021020566
101 https://doi.org/10.1007/978-3-319-24571-3_53
102 schema:sdDatePublished 2022-01-01T19:09
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher Nb518dea55f4c45c0b61c91ff2a8ebfb7
105 schema:url https://doi.org/10.1007/978-3-319-24571-3_53
106 sgo:license sg:explorer/license/
107 sgo:sdDataset chapters
108 rdf:type schema:Chapter
109 N061144b48b4945168bbdee2e6da40f0d rdf:first N7c87a7074051403a9996b0b94020260d
110 rdf:rest N5268fe4e4f6b4061a3ac17948e8f34a0
111 N0d315cc38608487d8f19d02f09883c2a schema:isbn 978-3-319-24570-6
112 978-3-319-24571-3
113 schema:name Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015
114 rdf:type schema:Book
115 N0f6d7eec439b474c9fdb257fd693f5d2 rdf:first sg:person.0656135130.31
116 rdf:rest N480fda54d2a84ec9be963940c5d3e385
117 N11af607836e14fee901504b36cbf2218 rdf:first sg:person.01217474726.73
118 rdf:rest N0f6d7eec439b474c9fdb257fd693f5d2
119 N1eba4ce96876434d912028eadb38f0fc rdf:first sg:person.01027273360.08
120 rdf:rest Ne9ad582419ad4072a7faec8f3ad1a30b
121 N3249155519de4f20849461370f7abd6e rdf:first sg:person.01173725567.20
122 rdf:rest N4123def5817d48799cc80ff30e7ba14f
123 N342329aeb9a74d1dbc23843f2c69628f schema:name Springer Nature
124 rdf:type schema:Organisation
125 N4123def5817d48799cc80ff30e7ba14f rdf:first sg:person.011260235657.38
126 rdf:rest N1eba4ce96876434d912028eadb38f0fc
127 N480fda54d2a84ec9be963940c5d3e385 rdf:first sg:person.0703547214.37
128 rdf:rest Nfe72f6082806413bbd7ee4ceac927f9c
129 N5268fe4e4f6b4061a3ac17948e8f34a0 rdf:first Nfbab256b44a0458ea1a93a759ef36012
130 rdf:rest rdf:nil
131 N6f26f6c85e544ba688cfcd753298c616 schema:name dimensions_id
132 schema:value pub.1021020566
133 rdf:type schema:PropertyValue
134 N715bc82604a24c2ab5f38371358dee50 rdf:first sg:person.01054566020.28
135 rdf:rest N11af607836e14fee901504b36cbf2218
136 N7799c853d1a0497c82f04b5781d33a9e rdf:first sg:person.01066111014.77
137 rdf:rest rdf:nil
138 N7c87a7074051403a9996b0b94020260d schema:familyName Wells
139 schema:givenName William M.
140 rdf:type schema:Person
141 N8cda2089081f4a5da06e4efb180a48b3 rdf:first sg:person.01322323610.92
142 rdf:rest N7799c853d1a0497c82f04b5781d33a9e
143 N971cf015e92c4344b974e41b98faa694 schema:familyName Hornegger
144 schema:givenName Joachim
145 rdf:type schema:Person
146 N9e0eec7bdcc446048b25f612ad15bbbb schema:name doi
147 schema:value 10.1007/978-3-319-24571-3_53
148 rdf:type schema:PropertyValue
149 Na745343f02bf4ce69f4c05671792dc37 rdf:first N971cf015e92c4344b974e41b98faa694
150 rdf:rest N061144b48b4945168bbdee2e6da40f0d
151 Nb518dea55f4c45c0b61c91ff2a8ebfb7 schema:name Springer Nature - SN SciGraph project
152 rdf:type schema:Organization
153 Nc65fe35f7e394757a4640e8eb55c035f rdf:first sg:person.01247726200.41
154 rdf:rest N3249155519de4f20849461370f7abd6e
155 Nca1f2836d96642d6803b396056b07a1b rdf:first Ne4a6cdd4c58944b587ce677a95bfd0d6
156 rdf:rest Na745343f02bf4ce69f4c05671792dc37
157 Ne4a6cdd4c58944b587ce677a95bfd0d6 schema:familyName Navab
158 schema:givenName Nassir
159 rdf:type schema:Person
160 Ne9ad582419ad4072a7faec8f3ad1a30b rdf:first sg:person.016410041115.36
161 rdf:rest N8cda2089081f4a5da06e4efb180a48b3
162 Nfbab256b44a0458ea1a93a759ef36012 schema:familyName Frangi
163 schema:givenName Alejandro
164 rdf:type schema:Person
165 Nfe72f6082806413bbd7ee4ceac927f9c rdf:first sg:person.01201613000.02
166 rdf:rest Nc65fe35f7e394757a4640e8eb55c035f
167 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
168 schema:name Information and Computing Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
171 schema:name Artificial Intelligence and Image Processing
172 rdf:type schema:DefinedTerm
173 sg:person.01027273360.08 schema:affiliation grid-institutes:grid.5253.1
174 schema:familyName Meder
175 schema:givenName Benjamin
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027273360.08
177 rdf:type schema:Person
178 sg:person.01054566020.28 schema:affiliation grid-institutes:grid.5330.5
179 schema:familyName Neumann
180 schema:givenName Dominik
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054566020.28
182 rdf:type schema:Person
183 sg:person.01066111014.77 schema:affiliation grid-institutes:None
184 schema:familyName Comaniciu
185 schema:givenName Dorin
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
187 rdf:type schema:Person
188 sg:person.011260235657.38 schema:affiliation grid-institutes:grid.5253.1
189 schema:familyName Katus
190 schema:givenName Hugo
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011260235657.38
192 rdf:type schema:Person
193 sg:person.01173725567.20 schema:affiliation grid-institutes:grid.5253.1
194 schema:familyName Haas
195 schema:givenName Jan
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173725567.20
197 rdf:type schema:Person
198 sg:person.01201613000.02 schema:affiliation grid-institutes:grid.5253.1
199 schema:familyName Kayvanpour
200 schema:givenName Elham
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201613000.02
202 rdf:type schema:Person
203 sg:person.01217474726.73 schema:affiliation grid-institutes:None
204 schema:familyName Mansi
205 schema:givenName Tommaso
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73
207 rdf:type schema:Person
208 sg:person.01247726200.41 schema:affiliation grid-institutes:grid.5253.1
209 schema:familyName Sedaghat-Hamedani
210 schema:givenName Farbod
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247726200.41
212 rdf:type schema:Person
213 sg:person.01322323610.92 schema:affiliation grid-institutes:grid.5330.5
214 schema:familyName Hornegger
215 schema:givenName Joachim
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322323610.92
217 rdf:type schema:Person
218 sg:person.016410041115.36 schema:affiliation grid-institutes:grid.5330.5
219 schema:familyName Steidl
220 schema:givenName Stefan
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016410041115.36
222 rdf:type schema:Person
223 sg:person.0656135130.31 schema:affiliation grid-institutes:None
224 schema:familyName Itu
225 schema:givenName Lucian
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656135130.31
227 rdf:type schema:Person
228 sg:person.0703547214.37 schema:affiliation grid-institutes:None
229 schema:familyName Georgescu
230 schema:givenName Bogdan
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
232 rdf:type schema:Person
233 grid-institutes:None schema:alternateName Imaging and Computer Vision, Siemens Corporate Technology, Chennai, Romania
234 Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA
235 schema:name Imaging and Computer Vision, Siemens Corporate Technology, Chennai, Romania
236 Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA
237 rdf:type schema:Organization
238 grid-institutes:grid.5253.1 schema:alternateName Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
239 schema:name Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
240 rdf:type schema:Organization
241 grid-institutes:grid.5330.5 schema:alternateName Pattern Recognition Lab, FAU Erlangen-Nürnberg, Erlangen, Germany
242 schema:name Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA
243 Pattern Recognition Lab, FAU Erlangen-Nürnberg, Erlangen, Germany
244 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...