Robust Live Tracking of Mitral Valve Annulus for Minimally-Invasive Intervention Guidance View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-11-18

AUTHORS

Ingmar Voigt , Mihai Scutaru , Tommaso Mansi , Bogdan Georgescu , Noha El-Zehiry , Helene Houle , Dorin Comaniciu

ABSTRACT

Mitral valve (MV) regurgitation is an important cardiac disorder that affects 2-3% of the Western population. While valve repair is commonly performed under open-heart surgery, an increasing number of transcatheter MV repair (TMVR) strategies are being developed. To be successful, TMVR requires extensive image guidance due to the complexity of MV physiology and of the therapies, in particular during device deployment. New trans-esophageal echocardiography (TEE) enable real-time, full-volume imaging of the valve including 3D anatomy and 3D color-Doppler flow. Such new transducers open a large range of applications for TMVR guidance, like the 3D assessment of the impact of a therapy on the MV function. In this manuscript we propose an algorithm towards the goal of live quantification of the MV anatomy. Leveraging the recent advances in ultrasound hardware, and combining machine learning approaches, predictive search strategies and efficient image-based tracking algorithms, we propose a novel method to automatically detect and track the MV annulus over very long image sequences. The method was tested on 12 4D TEE annotated sequences acquired in patients suffering from a large variety of disease. These sequences have been rigidly transformed to simulate probe motion. Obtained results showed a tracking accuracy of 4.04mm mean error, while demonstrating robustness when compared to purely image based methods. Our approach therefore paves the way towards quantitative guidance of TMVR through live 3D valve modeling. More... »

PAGES

439-446

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_54

DOI

http://dx.doi.org/10.1007/978-3-319-24553-9_54

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029352560


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voigt", 
        "givenName": "Ingmar", 
        "id": "sg:person.0751662414.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662414.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Brasov, Romania", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Brasov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scutaru", 
        "givenName": "Mihai", 
        "id": "sg:person.016046563772.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046563772.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansi", 
        "givenName": "Tommaso", 
        "id": "sg:person.01217474726.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El-Zehiry", 
        "givenName": "Noha", 
        "id": "sg:person.07657676251.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657676251.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporation, Healthcare Clinical Products, Ultrasound, Mountain View, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens Corporation, Healthcare Clinical Products, Ultrasound, Mountain View, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Houle", 
        "givenName": "Helene", 
        "id": "sg:person.01263427657.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263427657.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-11-18", 
    "datePublishedReg": "2015-11-18", 
    "description": "Mitral valve (MV) regurgitation is an important cardiac disorder that affects 2-3% of the Western population. While valve repair is commonly performed under open-heart surgery, an increasing number of transcatheter MV repair (TMVR) strategies are being developed. To be successful, TMVR requires extensive image guidance due to the complexity of MV physiology and of the therapies, in particular during device deployment. New trans-esophageal echocardiography (TEE) enable real-time, full-volume imaging of the valve including 3D anatomy and 3D color-Doppler flow. Such new transducers open a large range of applications for TMVR guidance, like the 3D assessment of the impact of a therapy on the MV function. In this manuscript we propose an algorithm towards the goal of live quantification of the MV anatomy. Leveraging the recent advances in ultrasound hardware, and combining machine learning approaches, predictive search strategies and efficient image-based tracking algorithms, we propose a novel method to automatically detect and track the MV annulus over very long image sequences. The method was tested on 12 4D TEE annotated sequences acquired in patients suffering from a large variety of disease. These sequences have been rigidly transformed to simulate probe motion. Obtained results showed a tracking accuracy of 4.04mm mean error, while demonstrating robustness when compared to purely image based methods. Our approach therefore paves the way towards quantitative guidance of TMVR through live 3D valve modeling.", 
    "editor": [
      {
        "familyName": "Navab", 
        "givenName": "Nassir", 
        "type": "Person"
      }, 
      {
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "familyName": "Wells", 
        "givenName": "William M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Frangi", 
        "givenName": "Alejandro", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-24553-9_54", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-24552-2", 
        "978-3-319-24553-9"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015", 
      "type": "Book"
    }, 
    "keywords": [
      "image-based tracking algorithm", 
      "full-volume imaging", 
      "long image sequences", 
      "machine learning approaches", 
      "image sequences", 
      "tracking algorithm", 
      "learning approach", 
      "MV physiology", 
      "valve modeling", 
      "important cardiac disorders", 
      "ultrasound hardware", 
      "algorithm", 
      "search strategy", 
      "intervention guidance", 
      "color-Doppler flow", 
      "live tracking", 
      "novel method", 
      "probe motion", 
      "hardware", 
      "large variety", 
      "MV anatomy", 
      "image guidance", 
      "tracking", 
      "deployment", 
      "device deployment", 
      "complexity", 
      "robustness", 
      "method", 
      "accuracy", 
      "MV function", 
      "applications", 
      "recent advances", 
      "guidance", 
      "error", 
      "modeling", 
      "MV annulus", 
      "goal", 
      "sequence", 
      "strategies", 
      "way", 
      "repair strategies", 
      "quantitative guidance", 
      "advances", 
      "motion", 
      "large range", 
      "number", 
      "variety", 
      "trans-esophageal echocardiography", 
      "TMVR", 
      "results", 
      "new transducer", 
      "function", 
      "manuscript", 
      "imaging", 
      "anatomy", 
      "flow", 
      "cardiac disorders", 
      "impact", 
      "assessment", 
      "range", 
      "quantification", 
      "transducer", 
      "mitral valve annulus", 
      "valve annulus", 
      "valve", 
      "repair", 
      "population", 
      "annulus", 
      "mitral valve regurgitation", 
      "surgery", 
      "echocardiography", 
      "physiology", 
      "disease", 
      "patients", 
      "valve repair", 
      "open-heart surgery", 
      "approach", 
      "disorders", 
      "valve regurgitation", 
      "therapy", 
      "regurgitation", 
      "Western populations", 
      "transcatheter MV repair (TMVR) strategies", 
      "MV repair (TMVR) strategies", 
      "extensive image guidance", 
      "New trans-esophageal echocardiography", 
      "Such new transducers", 
      "TMVR guidance", 
      "live quantification", 
      "predictive search strategies", 
      "efficient image-based tracking algorithms", 
      "live 3D valve modeling", 
      "Robust Live Tracking", 
      "Minimally-Invasive Intervention Guidance"
    ], 
    "name": "Robust Live Tracking of Mitral Valve Annulus for Minimally-Invasive Intervention Guidance", 
    "pagination": "439-446", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029352560"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-24553-9_54"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-24553-9_54", 
      "https://app.dimensions.ai/details/publication/pub.1029352560"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_276.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-24553-9_54"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_54'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_54'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_54'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_54'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      23 PREDICATES      119 URIs      112 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-24553-9_54 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6e0d17323b574f14a069477ce7a32235
4 schema:datePublished 2015-11-18
5 schema:datePublishedReg 2015-11-18
6 schema:description Mitral valve (MV) regurgitation is an important cardiac disorder that affects 2-3% of the Western population. While valve repair is commonly performed under open-heart surgery, an increasing number of transcatheter MV repair (TMVR) strategies are being developed. To be successful, TMVR requires extensive image guidance due to the complexity of MV physiology and of the therapies, in particular during device deployment. New trans-esophageal echocardiography (TEE) enable real-time, full-volume imaging of the valve including 3D anatomy and 3D color-Doppler flow. Such new transducers open a large range of applications for TMVR guidance, like the 3D assessment of the impact of a therapy on the MV function. In this manuscript we propose an algorithm towards the goal of live quantification of the MV anatomy. Leveraging the recent advances in ultrasound hardware, and combining machine learning approaches, predictive search strategies and efficient image-based tracking algorithms, we propose a novel method to automatically detect and track the MV annulus over very long image sequences. The method was tested on 12 4D TEE annotated sequences acquired in patients suffering from a large variety of disease. These sequences have been rigidly transformed to simulate probe motion. Obtained results showed a tracking accuracy of 4.04mm mean error, while demonstrating robustness when compared to purely image based methods. Our approach therefore paves the way towards quantitative guidance of TMVR through live 3D valve modeling.
7 schema:editor N70786527a2884934997138f78b735002
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N14285a16549549c7bdfa8d6640f2a408
12 schema:keywords MV anatomy
13 MV annulus
14 MV function
15 MV physiology
16 MV repair (TMVR) strategies
17 Minimally-Invasive Intervention Guidance
18 New trans-esophageal echocardiography
19 Robust Live Tracking
20 Such new transducers
21 TMVR
22 TMVR guidance
23 Western populations
24 accuracy
25 advances
26 algorithm
27 anatomy
28 annulus
29 applications
30 approach
31 assessment
32 cardiac disorders
33 color-Doppler flow
34 complexity
35 deployment
36 device deployment
37 disease
38 disorders
39 echocardiography
40 efficient image-based tracking algorithms
41 error
42 extensive image guidance
43 flow
44 full-volume imaging
45 function
46 goal
47 guidance
48 hardware
49 image guidance
50 image sequences
51 image-based tracking algorithm
52 imaging
53 impact
54 important cardiac disorders
55 intervention guidance
56 large range
57 large variety
58 learning approach
59 live 3D valve modeling
60 live quantification
61 live tracking
62 long image sequences
63 machine learning approaches
64 manuscript
65 method
66 mitral valve annulus
67 mitral valve regurgitation
68 modeling
69 motion
70 new transducer
71 novel method
72 number
73 open-heart surgery
74 patients
75 physiology
76 population
77 predictive search strategies
78 probe motion
79 quantification
80 quantitative guidance
81 range
82 recent advances
83 regurgitation
84 repair
85 repair strategies
86 results
87 robustness
88 search strategy
89 sequence
90 strategies
91 surgery
92 therapy
93 tracking
94 tracking algorithm
95 trans-esophageal echocardiography
96 transcatheter MV repair (TMVR) strategies
97 transducer
98 ultrasound hardware
99 valve
100 valve annulus
101 valve modeling
102 valve regurgitation
103 valve repair
104 variety
105 way
106 schema:name Robust Live Tracking of Mitral Valve Annulus for Minimally-Invasive Intervention Guidance
107 schema:pagination 439-446
108 schema:productId N576deb25d51c4337a698d2182a465226
109 Nba7d41acf448483ab98c5725aa5a2af2
110 schema:publisher Ne09d8b3b6ea046ddbf7e132b09bc7793
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029352560
112 https://doi.org/10.1007/978-3-319-24553-9_54
113 schema:sdDatePublished 2022-01-01T19:15
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher Nfdeac4b0e3fc42feb7722832de967f6d
116 schema:url https://doi.org/10.1007/978-3-319-24553-9_54
117 sgo:license sg:explorer/license/
118 sgo:sdDataset chapters
119 rdf:type schema:Chapter
120 N11a5a486385a402eb93256876fdb3f8e rdf:first sg:person.07657676251.51
121 rdf:rest N7df0a4432be94ae8b4a4f3041f9e4804
122 N14285a16549549c7bdfa8d6640f2a408 schema:isbn 978-3-319-24552-2
123 978-3-319-24553-9
124 schema:name Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015
125 rdf:type schema:Book
126 N3f43fafbda7e44b7bbff391c3a179b5f rdf:first sg:person.01066111014.77
127 rdf:rest rdf:nil
128 N47af4513e0624004aaeda155968691e8 rdf:first sg:person.0703547214.37
129 rdf:rest N11a5a486385a402eb93256876fdb3f8e
130 N51f07d86ddda43a8b33b944b95eddd60 rdf:first N6c3d7bbed0ff4ea986682b98f6b7920b
131 rdf:rest Nc9b5f99532464239848f149463674367
132 N576deb25d51c4337a698d2182a465226 schema:name dimensions_id
133 schema:value pub.1029352560
134 rdf:type schema:PropertyValue
135 N5b6769bfc4ae44388ecfe68347873761 rdf:first sg:person.01217474726.73
136 rdf:rest N47af4513e0624004aaeda155968691e8
137 N664e3d16837d4465ac4a7a9843ed7eb9 rdf:first Na48a36d8b1c8444a89263ae825c5212f
138 rdf:rest N51f07d86ddda43a8b33b944b95eddd60
139 N6c3d7bbed0ff4ea986682b98f6b7920b schema:familyName Wells
140 schema:givenName William M.
141 rdf:type schema:Person
142 N6e0d17323b574f14a069477ce7a32235 rdf:first sg:person.0751662414.66
143 rdf:rest Ne82636b71b4c43d8b1f4097dba071e10
144 N70786527a2884934997138f78b735002 rdf:first Nbe1fc53656eb404188003731f43ed50e
145 rdf:rest N664e3d16837d4465ac4a7a9843ed7eb9
146 N7df0a4432be94ae8b4a4f3041f9e4804 rdf:first sg:person.01263427657.06
147 rdf:rest N3f43fafbda7e44b7bbff391c3a179b5f
148 Na48a36d8b1c8444a89263ae825c5212f schema:familyName Hornegger
149 schema:givenName Joachim
150 rdf:type schema:Person
151 Nba7d41acf448483ab98c5725aa5a2af2 schema:name doi
152 schema:value 10.1007/978-3-319-24553-9_54
153 rdf:type schema:PropertyValue
154 Nbe1fc53656eb404188003731f43ed50e schema:familyName Navab
155 schema:givenName Nassir
156 rdf:type schema:Person
157 Nc9ad1519d49b40c9b2ee64e59c37f919 schema:familyName Frangi
158 schema:givenName Alejandro
159 rdf:type schema:Person
160 Nc9b5f99532464239848f149463674367 rdf:first Nc9ad1519d49b40c9b2ee64e59c37f919
161 rdf:rest rdf:nil
162 Ne09d8b3b6ea046ddbf7e132b09bc7793 schema:name Springer Nature
163 rdf:type schema:Organisation
164 Ne82636b71b4c43d8b1f4097dba071e10 rdf:first sg:person.016046563772.57
165 rdf:rest N5b6769bfc4ae44388ecfe68347873761
166 Nfdeac4b0e3fc42feb7722832de967f6d schema:name Springer Nature - SN SciGraph project
167 rdf:type schema:Organization
168 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
169 schema:name Information and Computing Sciences
170 rdf:type schema:DefinedTerm
171 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
172 schema:name Artificial Intelligence and Image Processing
173 rdf:type schema:DefinedTerm
174 sg:person.01066111014.77 schema:affiliation grid-institutes:None
175 schema:familyName Comaniciu
176 schema:givenName Dorin
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
178 rdf:type schema:Person
179 sg:person.01217474726.73 schema:affiliation grid-institutes:None
180 schema:familyName Mansi
181 schema:givenName Tommaso
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73
183 rdf:type schema:Person
184 sg:person.01263427657.06 schema:affiliation grid-institutes:None
185 schema:familyName Houle
186 schema:givenName Helene
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263427657.06
188 rdf:type schema:Person
189 sg:person.016046563772.57 schema:affiliation grid-institutes:None
190 schema:familyName Scutaru
191 schema:givenName Mihai
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046563772.57
193 rdf:type schema:Person
194 sg:person.0703547214.37 schema:affiliation grid-institutes:None
195 schema:familyName Georgescu
196 schema:givenName Bogdan
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
198 rdf:type schema:Person
199 sg:person.0751662414.66 schema:affiliation grid-institutes:grid.5406.7
200 schema:familyName Voigt
201 schema:givenName Ingmar
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662414.66
203 rdf:type schema:Person
204 sg:person.07657676251.51 schema:affiliation grid-institutes:None
205 schema:familyName El-Zehiry
206 schema:givenName Noha
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657676251.51
208 rdf:type schema:Person
209 grid-institutes:None schema:alternateName Imaging and Computer Vision, Siemens Corporate Technology, Brasov, Romania
210 Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA
211 Siemens Corporation, Healthcare Clinical Products, Ultrasound, Mountain View, USA
212 schema:name Imaging and Computer Vision, Siemens Corporate Technology, Brasov, Romania
213 Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA
214 Siemens Corporation, Healthcare Clinical Products, Ultrasound, Mountain View, USA
215 rdf:type schema:Organization
216 grid-institutes:grid.5406.7 schema:alternateName Imaging and Computer Vision, Siemens Corporate Technology, Erlangen, Germany
217 schema:name Imaging and Computer Vision, Siemens Corporate Technology, Erlangen, Germany
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...