Robust Live Tracking of Mitral Valve Annulus for Minimally-Invasive Intervention Guidance View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015-11-18

AUTHORS

Ingmar Voigt , Mihai Scutaru , Tommaso Mansi , Bogdan Georgescu , Noha El-Zehiry , Helene Houle , Dorin Comaniciu

ABSTRACT

Mitral valve (MV) regurgitation is an important cardiac disorder that affects 2-3% of the Western population. While valve repair is commonly performed under open-heart surgery, an increasing number of transcatheter MV repair (TMVR) strategies are being developed. To be successful, TMVR requires extensive image guidance due to the complexity of MV physiology and of the therapies, in particular during device deployment. New trans-esophageal echocardiography (TEE) enable real-time, full-volume imaging of the valve including 3D anatomy and 3D color-Doppler flow. Such new transducers open a large range of applications for TMVR guidance, like the 3D assessment of the impact of a therapy on the MV function. In this manuscript we propose an algorithm towards the goal of live quantification of the MV anatomy. Leveraging the recent advances in ultrasound hardware, and combining machine learning approaches, predictive search strategies and efficient image-based tracking algorithms, we propose a novel method to automatically detect and track the MV annulus over very long image sequences. The method was tested on 12 4D TEE annotated sequences acquired in patients suffering from a large variety of disease. These sequences have been rigidly transformed to simulate probe motion. Obtained results showed a tracking accuracy of 4.04mm mean error, while demonstrating robustness when compared to purely image based methods. Our approach therefore paves the way towards quantitative guidance of TMVR through live 3D valve modeling. More... »

PAGES

439-446

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_54

DOI

http://dx.doi.org/10.1007/978-3-319-24553-9_54

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029352560


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voigt", 
        "givenName": "Ingmar", 
        "id": "sg:person.0751662414.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662414.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Brasov, Romania", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Brasov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scutaru", 
        "givenName": "Mihai", 
        "id": "sg:person.016046563772.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046563772.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansi", 
        "givenName": "Tommaso", 
        "id": "sg:person.01217474726.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El-Zehiry", 
        "givenName": "Noha", 
        "id": "sg:person.07657676251.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657676251.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Corporation, Healthcare Clinical Products, Ultrasound, Mountain View, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens Corporation, Healthcare Clinical Products, Ultrasound, Mountain View, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Houle", 
        "givenName": "Helene", 
        "id": "sg:person.01263427657.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263427657.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-11-18", 
    "datePublishedReg": "2015-11-18", 
    "description": "Mitral valve (MV) regurgitation is an important cardiac disorder that affects 2-3% of the Western population. While valve repair is commonly performed under open-heart surgery, an increasing number of transcatheter MV repair (TMVR) strategies are being developed. To be successful, TMVR requires extensive image guidance due to the complexity of MV physiology and of the therapies, in particular during device deployment. New trans-esophageal echocardiography (TEE) enable real-time, full-volume imaging of the valve including 3D anatomy and 3D color-Doppler flow. Such new transducers open a large range of applications for TMVR guidance, like the 3D assessment of the impact of a therapy on the MV function. In this manuscript we propose an algorithm towards the goal of live quantification of the MV anatomy. Leveraging the recent advances in ultrasound hardware, and combining machine learning approaches, predictive search strategies and efficient image-based tracking algorithms, we propose a novel method to automatically detect and track the MV annulus over very long image sequences. The method was tested on 12 4D TEE annotated sequences acquired in patients suffering from a large variety of disease. These sequences have been rigidly transformed to simulate probe motion. Obtained results showed a tracking accuracy of 4.04mm mean error, while demonstrating robustness when compared to purely image based methods. Our approach therefore paves the way towards quantitative guidance of TMVR through live 3D valve modeling.", 
    "editor": [
      {
        "familyName": "Navab", 
        "givenName": "Nassir", 
        "type": "Person"
      }, 
      {
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "familyName": "Wells", 
        "givenName": "William M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Frangi", 
        "givenName": "Alejandro", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-24553-9_54", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-24552-2", 
        "978-3-319-24553-9"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015", 
      "type": "Book"
    }, 
    "keywords": [
      "image-based tracking algorithm", 
      "machine learning approaches", 
      "long image sequences", 
      "full-volume imaging", 
      "image sequences", 
      "learning approach", 
      "MV physiology", 
      "tracking algorithm", 
      "important cardiac disorders", 
      "valve modeling", 
      "ultrasound hardware", 
      "live tracking", 
      "search strategy", 
      "algorithm", 
      "intervention guidance", 
      "novel method", 
      "device deployment", 
      "hardware", 
      "large variety", 
      "deployment", 
      "MV anatomy", 
      "probe motion", 
      "tracking", 
      "image guidance", 
      "complexity", 
      "robustness", 
      "accuracy", 
      "method", 
      "MV annulus", 
      "recent advances", 
      "applications", 
      "guidance", 
      "modeling", 
      "error", 
      "MV function", 
      "goal", 
      "repair strategies", 
      "sequence", 
      "strategies", 
      "way", 
      "advances", 
      "large range", 
      "number", 
      "variety", 
      "motion", 
      "results", 
      "quantitative guidance", 
      "manuscript", 
      "function", 
      "anatomy", 
      "cardiac disorders", 
      "imaging", 
      "impact", 
      "flow", 
      "new transducer", 
      "assessment", 
      "range", 
      "quantification", 
      "trans-esophageal echocardiography", 
      "mitral valve annulus", 
      "color Doppler flow", 
      "transducer", 
      "TMVR", 
      "valve annulus", 
      "valve", 
      "approach", 
      "population", 
      "repair", 
      "annulus", 
      "disease", 
      "surgery", 
      "physiology", 
      "patients", 
      "echocardiography", 
      "mitral valve regurgitation", 
      "disorders", 
      "open heart surgery", 
      "therapy", 
      "valve repair", 
      "valve regurgitation", 
      "regurgitation", 
      "Western populations"
    ], 
    "name": "Robust Live Tracking of Mitral Valve Annulus for Minimally-Invasive Intervention Guidance", 
    "pagination": "439-446", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029352560"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-24553-9_54"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-24553-9_54", 
      "https://app.dimensions.ai/details/publication/pub.1029352560"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_147.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-24553-9_54"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_54'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_54'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_54'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_54'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      23 PREDICATES      107 URIs      100 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-24553-9_54 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nbabdf5197f7641ab9825b20b5046e871
4 schema:datePublished 2015-11-18
5 schema:datePublishedReg 2015-11-18
6 schema:description Mitral valve (MV) regurgitation is an important cardiac disorder that affects 2-3% of the Western population. While valve repair is commonly performed under open-heart surgery, an increasing number of transcatheter MV repair (TMVR) strategies are being developed. To be successful, TMVR requires extensive image guidance due to the complexity of MV physiology and of the therapies, in particular during device deployment. New trans-esophageal echocardiography (TEE) enable real-time, full-volume imaging of the valve including 3D anatomy and 3D color-Doppler flow. Such new transducers open a large range of applications for TMVR guidance, like the 3D assessment of the impact of a therapy on the MV function. In this manuscript we propose an algorithm towards the goal of live quantification of the MV anatomy. Leveraging the recent advances in ultrasound hardware, and combining machine learning approaches, predictive search strategies and efficient image-based tracking algorithms, we propose a novel method to automatically detect and track the MV annulus over very long image sequences. The method was tested on 12 4D TEE annotated sequences acquired in patients suffering from a large variety of disease. These sequences have been rigidly transformed to simulate probe motion. Obtained results showed a tracking accuracy of 4.04mm mean error, while demonstrating robustness when compared to purely image based methods. Our approach therefore paves the way towards quantitative guidance of TMVR through live 3D valve modeling.
7 schema:editor N302a6161035a4b57a13710035807ff4e
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N6bbf942931d849269ac5e9645131e038
12 schema:keywords MV anatomy
13 MV annulus
14 MV function
15 MV physiology
16 TMVR
17 Western populations
18 accuracy
19 advances
20 algorithm
21 anatomy
22 annulus
23 applications
24 approach
25 assessment
26 cardiac disorders
27 color Doppler flow
28 complexity
29 deployment
30 device deployment
31 disease
32 disorders
33 echocardiography
34 error
35 flow
36 full-volume imaging
37 function
38 goal
39 guidance
40 hardware
41 image guidance
42 image sequences
43 image-based tracking algorithm
44 imaging
45 impact
46 important cardiac disorders
47 intervention guidance
48 large range
49 large variety
50 learning approach
51 live tracking
52 long image sequences
53 machine learning approaches
54 manuscript
55 method
56 mitral valve annulus
57 mitral valve regurgitation
58 modeling
59 motion
60 new transducer
61 novel method
62 number
63 open heart surgery
64 patients
65 physiology
66 population
67 probe motion
68 quantification
69 quantitative guidance
70 range
71 recent advances
72 regurgitation
73 repair
74 repair strategies
75 results
76 robustness
77 search strategy
78 sequence
79 strategies
80 surgery
81 therapy
82 tracking
83 tracking algorithm
84 trans-esophageal echocardiography
85 transducer
86 ultrasound hardware
87 valve
88 valve annulus
89 valve modeling
90 valve regurgitation
91 valve repair
92 variety
93 way
94 schema:name Robust Live Tracking of Mitral Valve Annulus for Minimally-Invasive Intervention Guidance
95 schema:pagination 439-446
96 schema:productId N332c08914a8d481cbbc594c7ea3d1a9b
97 Nb72e103c375c44c5938d199f8545af94
98 schema:publisher N666ac5b22b5448a38306667f9954646e
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029352560
100 https://doi.org/10.1007/978-3-319-24553-9_54
101 schema:sdDatePublished 2022-05-20T07:42
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher N81e4e1cd093a416e87f54b1f90440710
104 schema:url https://doi.org/10.1007/978-3-319-24553-9_54
105 sgo:license sg:explorer/license/
106 sgo:sdDataset chapters
107 rdf:type schema:Chapter
108 N1adc6c4cde514feaaef9f4a7677b78dd rdf:first sg:person.07657676251.51
109 rdf:rest Nf63926bacaef40a09de3477fdb6614d3
110 N1e50a4a3b2584d86a9cb6acf5da1082a schema:familyName Navab
111 schema:givenName Nassir
112 rdf:type schema:Person
113 N1f4ca3e45b274aeba2ce5d48a70ffa8a rdf:first sg:person.0703547214.37
114 rdf:rest N1adc6c4cde514feaaef9f4a7677b78dd
115 N259204696b7843eb9c409829fef9492e schema:familyName Frangi
116 schema:givenName Alejandro
117 rdf:type schema:Person
118 N2eb2ca1919c1480e80e1694aa4414960 rdf:first N259204696b7843eb9c409829fef9492e
119 rdf:rest rdf:nil
120 N302a6161035a4b57a13710035807ff4e rdf:first N1e50a4a3b2584d86a9cb6acf5da1082a
121 rdf:rest N7e7029f7c03344e891efdc9324cb9c71
122 N332c08914a8d481cbbc594c7ea3d1a9b schema:name doi
123 schema:value 10.1007/978-3-319-24553-9_54
124 rdf:type schema:PropertyValue
125 N5d99b8388aa44104bd3b5532aadc4937 rdf:first sg:person.01066111014.77
126 rdf:rest rdf:nil
127 N666ac5b22b5448a38306667f9954646e schema:name Springer Nature
128 rdf:type schema:Organisation
129 N6bbf942931d849269ac5e9645131e038 schema:isbn 978-3-319-24552-2
130 978-3-319-24553-9
131 schema:name Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015
132 rdf:type schema:Book
133 N6ee0c23452dd48fca20c4d2575406f58 schema:familyName Hornegger
134 schema:givenName Joachim
135 rdf:type schema:Person
136 N7e7029f7c03344e891efdc9324cb9c71 rdf:first N6ee0c23452dd48fca20c4d2575406f58
137 rdf:rest Na3850f2ba1034a0e94a99253bc277464
138 N81e4e1cd093a416e87f54b1f90440710 schema:name Springer Nature - SN SciGraph project
139 rdf:type schema:Organization
140 Na3850f2ba1034a0e94a99253bc277464 rdf:first Nea2a3ef45c224b5d84ece560ee1a52bf
141 rdf:rest N2eb2ca1919c1480e80e1694aa4414960
142 Nb72e103c375c44c5938d199f8545af94 schema:name dimensions_id
143 schema:value pub.1029352560
144 rdf:type schema:PropertyValue
145 Nbabdf5197f7641ab9825b20b5046e871 rdf:first sg:person.0751662414.66
146 rdf:rest Needc55d534ef42a7b4ac8b0f6591ef40
147 Nbaddf5191e1c453abebfb4051424cd73 rdf:first sg:person.01217474726.73
148 rdf:rest N1f4ca3e45b274aeba2ce5d48a70ffa8a
149 Nea2a3ef45c224b5d84ece560ee1a52bf schema:familyName Wells
150 schema:givenName William M.
151 rdf:type schema:Person
152 Needc55d534ef42a7b4ac8b0f6591ef40 rdf:first sg:person.016046563772.57
153 rdf:rest Nbaddf5191e1c453abebfb4051424cd73
154 Nf63926bacaef40a09de3477fdb6614d3 rdf:first sg:person.01263427657.06
155 rdf:rest N5d99b8388aa44104bd3b5532aadc4937
156 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
157 schema:name Information and Computing Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
160 schema:name Artificial Intelligence and Image Processing
161 rdf:type schema:DefinedTerm
162 sg:person.01066111014.77 schema:affiliation grid-institutes:None
163 schema:familyName Comaniciu
164 schema:givenName Dorin
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
166 rdf:type schema:Person
167 sg:person.01217474726.73 schema:affiliation grid-institutes:None
168 schema:familyName Mansi
169 schema:givenName Tommaso
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73
171 rdf:type schema:Person
172 sg:person.01263427657.06 schema:affiliation grid-institutes:None
173 schema:familyName Houle
174 schema:givenName Helene
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263427657.06
176 rdf:type schema:Person
177 sg:person.016046563772.57 schema:affiliation grid-institutes:None
178 schema:familyName Scutaru
179 schema:givenName Mihai
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046563772.57
181 rdf:type schema:Person
182 sg:person.0703547214.37 schema:affiliation grid-institutes:None
183 schema:familyName Georgescu
184 schema:givenName Bogdan
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
186 rdf:type schema:Person
187 sg:person.0751662414.66 schema:affiliation grid-institutes:grid.5406.7
188 schema:familyName Voigt
189 schema:givenName Ingmar
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662414.66
191 rdf:type schema:Person
192 sg:person.07657676251.51 schema:affiliation grid-institutes:None
193 schema:familyName El-Zehiry
194 schema:givenName Noha
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657676251.51
196 rdf:type schema:Person
197 grid-institutes:None schema:alternateName Imaging and Computer Vision, Siemens Corporate Technology, Brasov, Romania
198 Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA
199 Siemens Corporation, Healthcare Clinical Products, Ultrasound, Mountain View, USA
200 schema:name Imaging and Computer Vision, Siemens Corporate Technology, Brasov, Romania
201 Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, USA
202 Siemens Corporation, Healthcare Clinical Products, Ultrasound, Mountain View, USA
203 rdf:type schema:Organization
204 grid-institutes:grid.5406.7 schema:alternateName Imaging and Computer Vision, Siemens Corporate Technology, Erlangen, Germany
205 schema:name Imaging and Computer Vision, Siemens Corporate Technology, Erlangen, Germany
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...