Robust Live Tracking of Mitral Valve Annulus for Minimally-Invasive Intervention Guidance View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Ingmar Voigt , Mihai Scutaru , Tommaso Mansi , Bogdan Georgescu , Noha El-Zehiry , Helene Houle , Dorin Comaniciu

ABSTRACT

Mitral valve (MV) regurgitation is an important cardiac disorder that affects 2-3% of the Western population. While valve repair is commonly performed under open-heart surgery, an increasing number of transcatheter MV repair (TMVR) strategies are being developed. To be successful, TMVR requires extensive image guidance due to the complexity of MV physiology and of the therapies, in particular during device deployment. New trans-esophageal echocardiography (TEE) enable real-time, full-volume imaging of the valve including 3D anatomy and 3D color-Doppler flow. Such new transducers open a large range of applications for TMVR guidance, like the 3D assessment of the impact of a therapy on the MV function. In this manuscript we propose an algorithm towards the goal of live quantification of the MV anatomy. Leveraging the recent advances in ultrasound hardware, and combining machine learning approaches, predictive search strategies and efficient image-based tracking algorithms, we propose a novel method to automatically detect and track the MV annulus over very long image sequences. The method was tested on 12 4D TEE annotated sequences acquired in patients suffering from a large variety of disease. These sequences have been rigidly transformed to simulate probe motion. Obtained results showed a tracking accuracy of 4.04mm mean error, while demonstrating robustness when compared to purely image based methods. Our approach therefore paves the way towards quantitative guidance of TMVR through live 3D valve modeling. More... »

PAGES

439-446

References to SciGraph publications

  • 2015. Analysis of Mitral Valve Motion in 4D Transesophageal Echocardiography for Transcatheter Aortic Valve Implantation in STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART - IMAGING AND MODELLING CHALLENGES
  • Book

    TITLE

    Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015

    ISBN

    978-3-319-24552-2
    978-3-319-24553-9

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_54

    DOI

    http://dx.doi.org/10.1007/978-3-319-24553-9_54

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1029352560


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Imaging and Computer Vision, Siemens Corporate Technology"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Voigt", 
            "givenName": "Ingmar", 
            "id": "sg:person.0751662414.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662414.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Imaging and Computer Vision, Siemens Corporate Technology"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scutaru", 
            "givenName": "Mihai", 
            "id": "sg:person.016046563772.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046563772.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Imaging and Computer Vision, Siemens Corporate Technology"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mansi", 
            "givenName": "Tommaso", 
            "id": "sg:person.01217474726.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Imaging and Computer Vision, Siemens Corporate Technology"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Georgescu", 
            "givenName": "Bogdan", 
            "id": "sg:person.0703547214.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Imaging and Computer Vision, Siemens Corporate Technology"
              ], 
              "type": "Organization"
            }, 
            "familyName": "El-Zehiry", 
            "givenName": "Noha", 
            "id": "sg:person.07657676251.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657676251.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Siemens Corporation, Healthcare Clinical Products, Ultrasound"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Houle", 
            "givenName": "Helene", 
            "id": "sg:person.01263427657.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263427657.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Imaging and Computer Vision, Siemens Corporate Technology"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Comaniciu", 
            "givenName": "Dorin", 
            "id": "sg:person.01066111014.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1161/circimaging.114.000992", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004743603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circimaging.114.000992", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004743603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2011.11.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008917344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2011.11.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008917344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-14678-2_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011192760", 
              "https://doi.org/10.1007/978-3-319-14678-2_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/cviu.1995.1004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021804206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jacc.2014.08.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030004945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2010.2048756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061695562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2012.2228879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061696016"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015", 
        "datePublishedReg": "2015-01-01", 
        "description": "Mitral valve (MV) regurgitation is an important cardiac disorder that affects 2-3% of the Western population. While valve repair is commonly performed under open-heart surgery, an increasing number of transcatheter MV repair (TMVR) strategies are being developed. To be successful, TMVR requires extensive image guidance due to the complexity of MV physiology and of the therapies, in particular during device deployment. New trans-esophageal echocardiography (TEE) enable real-time, full-volume imaging of the valve including 3D anatomy and 3D color-Doppler flow. Such new transducers open a large range of applications for TMVR guidance, like the 3D assessment of the impact of a therapy on the MV function. In this manuscript we propose an algorithm towards the goal of live quantification of the MV anatomy. Leveraging the recent advances in ultrasound hardware, and combining machine learning approaches, predictive search strategies and efficient image-based tracking algorithms, we propose a novel method to automatically detect and track the MV annulus over very long image sequences. The method was tested on 12 4D TEE annotated sequences acquired in patients suffering from a large variety of disease. These sequences have been rigidly transformed to simulate probe motion. Obtained results showed a tracking accuracy of 4.04mm mean error, while demonstrating robustness when compared to purely image based methods. Our approach therefore paves the way towards quantitative guidance of TMVR through live 3D valve modeling.", 
        "editor": [
          {
            "familyName": "Navab", 
            "givenName": "Nassir", 
            "type": "Person"
          }, 
          {
            "familyName": "Hornegger", 
            "givenName": "Joachim", 
            "type": "Person"
          }, 
          {
            "familyName": "Wells", 
            "givenName": "William M.", 
            "type": "Person"
          }, 
          {
            "familyName": "Frangi", 
            "givenName": "Alejandro", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-24553-9_54", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-24552-2", 
            "978-3-319-24553-9"
          ], 
          "name": "Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015", 
          "type": "Book"
        }, 
        "name": "Robust Live Tracking of Mitral Valve Annulus for Minimally-Invasive Intervention Guidance", 
        "pagination": "439-446", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-24553-9_54"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8bd4b5fc95150f34c155bfa4c5aaed4664ccdb7b17ff0c312c0e362ffa7a04b7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1029352560"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-24553-9_54", 
          "https://app.dimensions.ai/details/publication/pub.1029352560"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T16:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000261.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-24553-9_54"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_54'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_54'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_54'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_54'


     

    This table displays all metadata directly associated to this object as RDF triples.

    155 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-24553-9_54 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nf8500ae52e63446fb03b143f4d46ccc0
    4 schema:citation sg:pub.10.1007/978-3-319-14678-2_17
    5 https://doi.org/10.1006/cviu.1995.1004
    6 https://doi.org/10.1016/j.jacc.2014.08.024
    7 https://doi.org/10.1016/j.media.2011.11.006
    8 https://doi.org/10.1109/tmi.2010.2048756
    9 https://doi.org/10.1109/tmi.2012.2228879
    10 https://doi.org/10.1161/circimaging.114.000992
    11 schema:datePublished 2015
    12 schema:datePublishedReg 2015-01-01
    13 schema:description Mitral valve (MV) regurgitation is an important cardiac disorder that affects 2-3% of the Western population. While valve repair is commonly performed under open-heart surgery, an increasing number of transcatheter MV repair (TMVR) strategies are being developed. To be successful, TMVR requires extensive image guidance due to the complexity of MV physiology and of the therapies, in particular during device deployment. New trans-esophageal echocardiography (TEE) enable real-time, full-volume imaging of the valve including 3D anatomy and 3D color-Doppler flow. Such new transducers open a large range of applications for TMVR guidance, like the 3D assessment of the impact of a therapy on the MV function. In this manuscript we propose an algorithm towards the goal of live quantification of the MV anatomy. Leveraging the recent advances in ultrasound hardware, and combining machine learning approaches, predictive search strategies and efficient image-based tracking algorithms, we propose a novel method to automatically detect and track the MV annulus over very long image sequences. The method was tested on 12 4D TEE annotated sequences acquired in patients suffering from a large variety of disease. These sequences have been rigidly transformed to simulate probe motion. Obtained results showed a tracking accuracy of 4.04mm mean error, while demonstrating robustness when compared to purely image based methods. Our approach therefore paves the way towards quantitative guidance of TMVR through live 3D valve modeling.
    14 schema:editor N89f6e6c0edfd4f41862b9623819af796
    15 schema:genre chapter
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N3ef9537c473e475bad834b1ad050cdb7
    19 schema:name Robust Live Tracking of Mitral Valve Annulus for Minimally-Invasive Intervention Guidance
    20 schema:pagination 439-446
    21 schema:productId N723689b9912441089e6340e8f62a7a79
    22 Nb1dab7f74f614600a899c1a9ea848716
    23 Nd6d6344013d44e0a964257f66199ffdf
    24 schema:publisher N43532cb0dd9c4edea89e350874a7f9c9
    25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029352560
    26 https://doi.org/10.1007/978-3-319-24553-9_54
    27 schema:sdDatePublished 2019-04-15T16:17
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher N6e246f776858461c8d7a1d36038681cd
    30 schema:url http://link.springer.com/10.1007/978-3-319-24553-9_54
    31 sgo:license sg:explorer/license/
    32 sgo:sdDataset chapters
    33 rdf:type schema:Chapter
    34 N043c800def9440fca8a6ff093d52220a rdf:first Nfd802da35b4449e0ab108a0880908277
    35 rdf:rest Nbbdefb289b264d2e90fc9b8dcd5cdcf2
    36 N0762a6cb994c4e839824127991c3d2af schema:name Imaging and Computer Vision, Siemens Corporate Technology
    37 rdf:type schema:Organization
    38 N14627b3f4fef4c08926e1c2e351f5db4 rdf:first sg:person.01217474726.73
    39 rdf:rest Nd828c02e569f460f9b017ecec8d7be35
    40 N171061a289f3487b80d2c62843920503 schema:familyName Frangi
    41 schema:givenName Alejandro
    42 rdf:type schema:Person
    43 N1a2693f766ec4bb48d8189287571bc5b rdf:first N171061a289f3487b80d2c62843920503
    44 rdf:rest rdf:nil
    45 N2c43cdae87244f2b9f6707374d90bacf rdf:first sg:person.016046563772.57
    46 rdf:rest N14627b3f4fef4c08926e1c2e351f5db4
    47 N3ef9537c473e475bad834b1ad050cdb7 schema:isbn 978-3-319-24552-2
    48 978-3-319-24553-9
    49 schema:name Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015
    50 rdf:type schema:Book
    51 N43532cb0dd9c4edea89e350874a7f9c9 schema:location Cham
    52 schema:name Springer International Publishing
    53 rdf:type schema:Organisation
    54 N5f23da06ec4b4b5c993bcfdcd51cf0b0 schema:familyName Navab
    55 schema:givenName Nassir
    56 rdf:type schema:Person
    57 N68f1418ef96c43ae97fcd510f91816cf schema:name Imaging and Computer Vision, Siemens Corporate Technology
    58 rdf:type schema:Organization
    59 N6e246f776858461c8d7a1d36038681cd schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 N723689b9912441089e6340e8f62a7a79 schema:name doi
    62 schema:value 10.1007/978-3-319-24553-9_54
    63 rdf:type schema:PropertyValue
    64 N7a78d237f2d5425580bfd230bb6e76d5 rdf:first sg:person.01263427657.06
    65 rdf:rest Nc14abe5c0b284259a9bafcc66206f568
    66 N89f6e6c0edfd4f41862b9623819af796 rdf:first N5f23da06ec4b4b5c993bcfdcd51cf0b0
    67 rdf:rest N043c800def9440fca8a6ff093d52220a
    68 N9915b9f9ae374f90ac3802ce255a7ea7 rdf:first sg:person.07657676251.51
    69 rdf:rest N7a78d237f2d5425580bfd230bb6e76d5
    70 Nb1dab7f74f614600a899c1a9ea848716 schema:name readcube_id
    71 schema:value 8bd4b5fc95150f34c155bfa4c5aaed4664ccdb7b17ff0c312c0e362ffa7a04b7
    72 rdf:type schema:PropertyValue
    73 Nbbdefb289b264d2e90fc9b8dcd5cdcf2 rdf:first Ndbce85d2058d4369ad6e75cad8b852b6
    74 rdf:rest N1a2693f766ec4bb48d8189287571bc5b
    75 Nbf6898ec9fe14cbdaa49d1ecfaab7962 schema:name Imaging and Computer Vision, Siemens Corporate Technology
    76 rdf:type schema:Organization
    77 Nc14abe5c0b284259a9bafcc66206f568 rdf:first sg:person.01066111014.77
    78 rdf:rest rdf:nil
    79 Nc1a819562a44432fbb991a20ee2942b6 schema:name Imaging and Computer Vision, Siemens Corporate Technology
    80 rdf:type schema:Organization
    81 Nc5fb848b1dc940e390df27422a34e268 schema:name Imaging and Computer Vision, Siemens Corporate Technology
    82 rdf:type schema:Organization
    83 Nd6d6344013d44e0a964257f66199ffdf schema:name dimensions_id
    84 schema:value pub.1029352560
    85 rdf:type schema:PropertyValue
    86 Nd828c02e569f460f9b017ecec8d7be35 rdf:first sg:person.0703547214.37
    87 rdf:rest N9915b9f9ae374f90ac3802ce255a7ea7
    88 Ndbce85d2058d4369ad6e75cad8b852b6 schema:familyName Wells
    89 schema:givenName William M.
    90 rdf:type schema:Person
    91 Nf8500ae52e63446fb03b143f4d46ccc0 rdf:first sg:person.0751662414.66
    92 rdf:rest N2c43cdae87244f2b9f6707374d90bacf
    93 Nfcb011f8dab54aac8b744cfa6c299c53 schema:name Imaging and Computer Vision, Siemens Corporate Technology
    94 rdf:type schema:Organization
    95 Nfd802da35b4449e0ab108a0880908277 schema:familyName Hornegger
    96 schema:givenName Joachim
    97 rdf:type schema:Person
    98 Nfe1ce97ef8c5485094dbab1adf2ee5af schema:name Siemens Corporation, Healthcare Clinical Products, Ultrasound
    99 rdf:type schema:Organization
    100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Information and Computing Sciences
    102 rdf:type schema:DefinedTerm
    103 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Artificial Intelligence and Image Processing
    105 rdf:type schema:DefinedTerm
    106 sg:person.01066111014.77 schema:affiliation Nc5fb848b1dc940e390df27422a34e268
    107 schema:familyName Comaniciu
    108 schema:givenName Dorin
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
    110 rdf:type schema:Person
    111 sg:person.01217474726.73 schema:affiliation Nc1a819562a44432fbb991a20ee2942b6
    112 schema:familyName Mansi
    113 schema:givenName Tommaso
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217474726.73
    115 rdf:type schema:Person
    116 sg:person.01263427657.06 schema:affiliation Nfe1ce97ef8c5485094dbab1adf2ee5af
    117 schema:familyName Houle
    118 schema:givenName Helene
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263427657.06
    120 rdf:type schema:Person
    121 sg:person.016046563772.57 schema:affiliation Nfcb011f8dab54aac8b744cfa6c299c53
    122 schema:familyName Scutaru
    123 schema:givenName Mihai
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046563772.57
    125 rdf:type schema:Person
    126 sg:person.0703547214.37 schema:affiliation N68f1418ef96c43ae97fcd510f91816cf
    127 schema:familyName Georgescu
    128 schema:givenName Bogdan
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
    130 rdf:type schema:Person
    131 sg:person.0751662414.66 schema:affiliation N0762a6cb994c4e839824127991c3d2af
    132 schema:familyName Voigt
    133 schema:givenName Ingmar
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751662414.66
    135 rdf:type schema:Person
    136 sg:person.07657676251.51 schema:affiliation Nbf6898ec9fe14cbdaa49d1ecfaab7962
    137 schema:familyName El-Zehiry
    138 schema:givenName Noha
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657676251.51
    140 rdf:type schema:Person
    141 sg:pub.10.1007/978-3-319-14678-2_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011192760
    142 https://doi.org/10.1007/978-3-319-14678-2_17
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1006/cviu.1995.1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021804206
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.jacc.2014.08.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030004945
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.media.2011.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008917344
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/tmi.2010.2048756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695562
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/tmi.2012.2228879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696016
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1161/circimaging.114.000992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004743603
    155 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...