q-Space Deep Learning for Twelve-Fold Shorter and Model-Free Diffusion MRI Scans View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2015-11-18

AUTHORS

Vladimir Golkov , Alexey Dosovitskiy , Philipp Sämann , Jonathan I. Sperl , Tim Sprenger , Michael Czisch , Marion I. Menzel , Pedro A. Gómez , Axel Haase , Thomas Brox , Daniel Cremers

ABSTRACT

Diffusion MRI uses a multi-step data processing pipeline. With certain steps being prone to instabilities, the pipeline relies on considerable amounts of partly redundant input data, which requires long acquisition time. This leads to high scan costs and makes advanced diffusion models such as diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density imaging (NODDI) inapplicable for children and adults who are uncooperative, uncomfortable or unwell. We demonstrate how deep learning, a group of algorithms in the field of artificial neural networks, can be applied to reduce diffusion MRI data processing to a single optimized step. This method allows obtaining scalar measures from advanced models at twelve-fold reduced scan time and detecting abnormalities without using diffusion models. More... »

PAGES

37-44

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_5

DOI

http://dx.doi.org/10.1007/978-3-319-24553-9_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015907065


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technische Universit\u00e4t M\u00fcnchen, Garching, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Technische Universit\u00e4t M\u00fcnchen, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golkov", 
        "givenName": "Vladimir", 
        "id": "sg:person.013455737001.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013455737001.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Freiburg, Freiburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "University of Freiburg, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dosovitskiy", 
        "givenName": "Alexey", 
        "id": "sg:person.011726376703.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726376703.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Psychiatry, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419548.5", 
          "name": [
            "Max Planck Institute of Psychiatry, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00e4mann", 
        "givenName": "Philipp", 
        "id": "sg:person.0611417074.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611417074.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GE Global Research, Garching, Germany", 
          "id": "http://www.grid.ac/institutes/grid.434575.4", 
          "name": [
            "GE Global Research, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sperl", 
        "givenName": "Jonathan I.", 
        "id": "sg:person.01326316453.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326316453.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GE Global Research, Garching, Germany", 
          "id": "http://www.grid.ac/institutes/grid.434575.4", 
          "name": [
            "Technische Universit\u00e4t M\u00fcnchen, Garching, Germany", 
            "GE Global Research, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sprenger", 
        "givenName": "Tim", 
        "id": "sg:person.015506104571.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015506104571.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Psychiatry, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419548.5", 
          "name": [
            "Max Planck Institute of Psychiatry, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Czisch", 
        "givenName": "Michael", 
        "id": "sg:person.01313553615.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313553615.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GE Global Research, Garching, Germany", 
          "id": "http://www.grid.ac/institutes/grid.434575.4", 
          "name": [
            "GE Global Research, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Menzel", 
        "givenName": "Marion I.", 
        "id": "sg:person.01276760206.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276760206.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "GE Global Research, Garching, Germany", 
          "id": "http://www.grid.ac/institutes/grid.434575.4", 
          "name": [
            "Technische Universit\u00e4t M\u00fcnchen, Garching, Germany", 
            "GE Global Research, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f3mez", 
        "givenName": "Pedro A.", 
        "id": "sg:person.014303762655.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014303762655.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Universit\u00e4t M\u00fcnchen, Garching, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Technische Universit\u00e4t M\u00fcnchen, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haase", 
        "givenName": "Axel", 
        "id": "sg:person.01004135246.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004135246.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Freiburg, Freiburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "University of Freiburg, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brox", 
        "givenName": "Thomas", 
        "id": "sg:person.012443225372.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Universit\u00e4t M\u00fcnchen, Garching, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Technische Universit\u00e4t M\u00fcnchen, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cremers", 
        "givenName": "Daniel", 
        "id": "sg:person.010575005661.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575005661.04"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-11-18", 
    "datePublishedReg": "2015-11-18", 
    "description": "Diffusion MRI uses a multi-step data processing pipeline. With certain steps being prone to instabilities, the pipeline relies on considerable amounts of partly redundant input data, which requires long acquisition time. This leads to high scan costs and makes advanced diffusion models such as diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density imaging (NODDI) inapplicable for children and adults who are uncooperative, uncomfortable or unwell. We demonstrate how deep learning, a group of algorithms in the field of artificial neural networks, can be applied to reduce diffusion MRI data processing to a single optimized step. This method allows obtaining scalar measures from advanced models at twelve-fold reduced scan time and detecting abnormalities without using diffusion models.", 
    "editor": [
      {
        "familyName": "Navab", 
        "givenName": "Nassir", 
        "type": "Person"
      }, 
      {
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "familyName": "Wells", 
        "givenName": "William M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Frangi", 
        "givenName": "Alejandro", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-24553-9_5", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-24552-2", 
        "978-3-319-24553-9"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015", 
      "type": "Book"
    }, 
    "keywords": [
      "MRI data processing", 
      "group of algorithms", 
      "redundant input data", 
      "artificial neural network", 
      "data processing pipeline", 
      "deep learning", 
      "neural network", 
      "processing pipeline", 
      "data processing", 
      "input data", 
      "advanced diffusion models", 
      "optimized step", 
      "long acquisition times", 
      "scan cost", 
      "advanced models", 
      "pipeline", 
      "diffusion MRI scans", 
      "diffusion MRI", 
      "algorithm", 
      "certain steps", 
      "scan time", 
      "network", 
      "acquisition time", 
      "learning", 
      "Deep", 
      "processing", 
      "model", 
      "considerable amount", 
      "scalar measure", 
      "step", 
      "cost", 
      "diffusion model", 
      "time", 
      "data", 
      "method", 
      "twelve-fold", 
      "MRI scans", 
      "diffusion kurtosis imaging", 
      "field", 
      "neurite orientation dispersion", 
      "amount", 
      "imaging", 
      "orientation dispersion", 
      "measures", 
      "kurtosis imaging", 
      "scans", 
      "density imaging", 
      "MRI", 
      "Shorter", 
      "group", 
      "instability", 
      "abnormalities", 
      "dispersion", 
      "children", 
      "adults"
    ], 
    "name": "q-Space Deep Learning for Twelve-Fold Shorter and Model-Free Diffusion MRI Scans", 
    "pagination": "37-44", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015907065"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-24553-9_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-24553-9_5", 
      "https://app.dimensions.ai/details/publication/pub.1015907065"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_317.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-24553-9_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_5'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      22 PREDICATES      79 URIs      72 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-24553-9_5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nefb8068e9e8f49569d2a3af892e1d523
4 schema:datePublished 2015-11-18
5 schema:datePublishedReg 2015-11-18
6 schema:description Diffusion MRI uses a multi-step data processing pipeline. With certain steps being prone to instabilities, the pipeline relies on considerable amounts of partly redundant input data, which requires long acquisition time. This leads to high scan costs and makes advanced diffusion models such as diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density imaging (NODDI) inapplicable for children and adults who are uncooperative, uncomfortable or unwell. We demonstrate how deep learning, a group of algorithms in the field of artificial neural networks, can be applied to reduce diffusion MRI data processing to a single optimized step. This method allows obtaining scalar measures from advanced models at twelve-fold reduced scan time and detecting abnormalities without using diffusion models.
7 schema:editor Nca47f523aa764413ac4d15216d82a0c6
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N29d1c3e369104895b544437f666a2afe
11 schema:keywords Deep
12 MRI
13 MRI data processing
14 MRI scans
15 Shorter
16 abnormalities
17 acquisition time
18 adults
19 advanced diffusion models
20 advanced models
21 algorithm
22 amount
23 artificial neural network
24 certain steps
25 children
26 considerable amount
27 cost
28 data
29 data processing
30 data processing pipeline
31 deep learning
32 density imaging
33 diffusion MRI
34 diffusion MRI scans
35 diffusion kurtosis imaging
36 diffusion model
37 dispersion
38 field
39 group
40 group of algorithms
41 imaging
42 input data
43 instability
44 kurtosis imaging
45 learning
46 long acquisition times
47 measures
48 method
49 model
50 network
51 neural network
52 neurite orientation dispersion
53 optimized step
54 orientation dispersion
55 pipeline
56 processing
57 processing pipeline
58 redundant input data
59 scalar measure
60 scan cost
61 scan time
62 scans
63 step
64 time
65 twelve-fold
66 schema:name q-Space Deep Learning for Twelve-Fold Shorter and Model-Free Diffusion MRI Scans
67 schema:pagination 37-44
68 schema:productId N1f000a12219e480289efc33a726e1399
69 Nada60184f7c24504ac2db853eff908de
70 schema:publisher N547d1e9ae5124cc1bd02087fbaa106f8
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015907065
72 https://doi.org/10.1007/978-3-319-24553-9_5
73 schema:sdDatePublished 2022-09-02T16:15
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N68a7468a862544d98216ba9119f836fd
76 schema:url https://doi.org/10.1007/978-3-319-24553-9_5
77 sgo:license sg:explorer/license/
78 sgo:sdDataset chapters
79 rdf:type schema:Chapter
80 N05663fa739f3481399d54e321059c30c rdf:first sg:person.015506104571.09
81 rdf:rest N882ece989cd64bfd9e2df6640290d9ce
82 N1f000a12219e480289efc33a726e1399 schema:name doi
83 schema:value 10.1007/978-3-319-24553-9_5
84 rdf:type schema:PropertyValue
85 N29d1c3e369104895b544437f666a2afe schema:isbn 978-3-319-24552-2
86 978-3-319-24553-9
87 schema:name Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015
88 rdf:type schema:Book
89 N2c9319b374c74b3eb116ec0d022fe023 schema:familyName Wells
90 schema:givenName William M.
91 rdf:type schema:Person
92 N301f7721165b46f4a599417f9a192343 rdf:first sg:person.012443225372.65
93 rdf:rest N848ec380ab3e4e988de2f4d2425645bd
94 N3147bc1100ff48139f605ad1fd4ded22 schema:familyName Frangi
95 schema:givenName Alejandro
96 rdf:type schema:Person
97 N4919ab9039984af18acae22f1f11daaa rdf:first sg:person.01326316453.36
98 rdf:rest N05663fa739f3481399d54e321059c30c
99 N547d1e9ae5124cc1bd02087fbaa106f8 schema:name Springer Nature
100 rdf:type schema:Organisation
101 N66c9ad57a8e146ebbfdfdde92aaae5bc rdf:first Nad20cf90f1244220be9c901849e9e30a
102 rdf:rest Nfc46ff80a3de43c1924027fa1321c95e
103 N68a7468a862544d98216ba9119f836fd schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N848ec380ab3e4e988de2f4d2425645bd rdf:first sg:person.010575005661.04
106 rdf:rest rdf:nil
107 N882ece989cd64bfd9e2df6640290d9ce rdf:first sg:person.01313553615.80
108 rdf:rest N98f3c80855c74b4c85761b7dd797f6ac
109 N98bbe80649cc42c2b1ee685b03a6ef6b rdf:first sg:person.011726376703.15
110 rdf:rest Nf19cd8b5090e4d9096e58f7d4af8c00c
111 N98f3c80855c74b4c85761b7dd797f6ac rdf:first sg:person.01276760206.08
112 rdf:rest Nf28bba2e6d1343e98108286ade61cc97
113 Na27bda1e74d846d493075d46248107a5 rdf:first sg:person.01004135246.66
114 rdf:rest N301f7721165b46f4a599417f9a192343
115 Nad20cf90f1244220be9c901849e9e30a schema:familyName Hornegger
116 schema:givenName Joachim
117 rdf:type schema:Person
118 Nada60184f7c24504ac2db853eff908de schema:name dimensions_id
119 schema:value pub.1015907065
120 rdf:type schema:PropertyValue
121 Nc2c0f2acbe9c4f18a702fcc8cfe37690 rdf:first N3147bc1100ff48139f605ad1fd4ded22
122 rdf:rest rdf:nil
123 Nca47f523aa764413ac4d15216d82a0c6 rdf:first Ncccd1631cb5e4bc2b3944a54371c158f
124 rdf:rest N66c9ad57a8e146ebbfdfdde92aaae5bc
125 Ncccd1631cb5e4bc2b3944a54371c158f schema:familyName Navab
126 schema:givenName Nassir
127 rdf:type schema:Person
128 Nefb8068e9e8f49569d2a3af892e1d523 rdf:first sg:person.013455737001.13
129 rdf:rest N98bbe80649cc42c2b1ee685b03a6ef6b
130 Nf19cd8b5090e4d9096e58f7d4af8c00c rdf:first sg:person.0611417074.09
131 rdf:rest N4919ab9039984af18acae22f1f11daaa
132 Nf28bba2e6d1343e98108286ade61cc97 rdf:first sg:person.014303762655.72
133 rdf:rest Na27bda1e74d846d493075d46248107a5
134 Nfc46ff80a3de43c1924027fa1321c95e rdf:first N2c9319b374c74b3eb116ec0d022fe023
135 rdf:rest Nc2c0f2acbe9c4f18a702fcc8cfe37690
136 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
137 schema:name Information and Computing Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
140 schema:name Artificial Intelligence and Image Processing
141 rdf:type schema:DefinedTerm
142 sg:person.01004135246.66 schema:affiliation grid-institutes:grid.6936.a
143 schema:familyName Haase
144 schema:givenName Axel
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004135246.66
146 rdf:type schema:Person
147 sg:person.010575005661.04 schema:affiliation grid-institutes:grid.6936.a
148 schema:familyName Cremers
149 schema:givenName Daniel
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575005661.04
151 rdf:type schema:Person
152 sg:person.011726376703.15 schema:affiliation grid-institutes:grid.5963.9
153 schema:familyName Dosovitskiy
154 schema:givenName Alexey
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011726376703.15
156 rdf:type schema:Person
157 sg:person.012443225372.65 schema:affiliation grid-institutes:grid.5963.9
158 schema:familyName Brox
159 schema:givenName Thomas
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012443225372.65
161 rdf:type schema:Person
162 sg:person.01276760206.08 schema:affiliation grid-institutes:grid.434575.4
163 schema:familyName Menzel
164 schema:givenName Marion I.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276760206.08
166 rdf:type schema:Person
167 sg:person.01313553615.80 schema:affiliation grid-institutes:grid.419548.5
168 schema:familyName Czisch
169 schema:givenName Michael
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313553615.80
171 rdf:type schema:Person
172 sg:person.01326316453.36 schema:affiliation grid-institutes:grid.434575.4
173 schema:familyName Sperl
174 schema:givenName Jonathan I.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326316453.36
176 rdf:type schema:Person
177 sg:person.013455737001.13 schema:affiliation grid-institutes:grid.6936.a
178 schema:familyName Golkov
179 schema:givenName Vladimir
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013455737001.13
181 rdf:type schema:Person
182 sg:person.014303762655.72 schema:affiliation grid-institutes:grid.434575.4
183 schema:familyName Gómez
184 schema:givenName Pedro A.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014303762655.72
186 rdf:type schema:Person
187 sg:person.015506104571.09 schema:affiliation grid-institutes:grid.434575.4
188 schema:familyName Sprenger
189 schema:givenName Tim
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015506104571.09
191 rdf:type schema:Person
192 sg:person.0611417074.09 schema:affiliation grid-institutes:grid.419548.5
193 schema:familyName Sämann
194 schema:givenName Philipp
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611417074.09
196 rdf:type schema:Person
197 grid-institutes:grid.419548.5 schema:alternateName Max Planck Institute of Psychiatry, Munich, Germany
198 schema:name Max Planck Institute of Psychiatry, Munich, Germany
199 rdf:type schema:Organization
200 grid-institutes:grid.434575.4 schema:alternateName GE Global Research, Garching, Germany
201 schema:name GE Global Research, Garching, Germany
202 Technische Universität München, Garching, Germany
203 rdf:type schema:Organization
204 grid-institutes:grid.5963.9 schema:alternateName University of Freiburg, Freiburg, Germany
205 schema:name University of Freiburg, Freiburg, Germany
206 rdf:type schema:Organization
207 grid-institutes:grid.6936.a schema:alternateName Technische Universität München, Garching, Germany
208 schema:name Technische Universität München, Garching, Germany
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...