Rigid Motion Compensation in Interventional C-arm CT Using Consistency Measure on Projection Data View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Robert Frysch , Georg Rose

ABSTRACT

Interventional C-arm CT has the potential to visualize brain hemorrhages in the operating suite and save valuable time for stroke patients. Due to the critical constitution of the patients, C-arm CT images are frequently affected by patient motion artifacts, which often makes the reliable diagnosis of hemorrhages impossible. In this work, we propose a geometric optimization algorithm to compensate for these artifacts and present first results. The algorithm is based on a projection data consistency measure, which avoids computationally expensive forward- and backprojection steps in the optimization process. The ability to estimate movements with this measure is investigated for different rigid degrees of freedom. It was shown that out-of-plane parameters, i.e. geometrical deviations perpendicular to the plane of rotation, can be estimated with high precision. Movement artifacts in reconstructions are consistently reduced throughout all analyzed clinical datasets. With its low computational cost and high robustness, the proposed algorithm is well-suited for integration into clinical software prototypes for further evaluation. More... »

PAGES

298-306

Book

TITLE

Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015

ISBN

978-3-319-24552-2
978-3-319-24553-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_37

DOI

http://dx.doi.org/10.1007/978-3-319-24553-9_37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033303360


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute for Medical Engineering, University of Magdeburg"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frysch", 
        "givenName": "Robert", 
        "id": "sg:person.01075317001.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075317001.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute for Medical Engineering, University of Magdeburg"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rose", 
        "givenName": "Georg", 
        "id": "sg:person.0742175117.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742175117.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1118/1.595715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003600582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-008-0419-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004627416", 
          "https://doi.org/10.1007/s00234-008-0419-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-008-0419-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004627416", 
          "https://doi.org/10.1007/s00234-008-0419-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23623-5_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023012594", 
          "https://doi.org/10.1007/978-3-642-23623-5_65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-23623-5_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023012594", 
          "https://doi.org/10.1007/978-3-642-23623-5_65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.811505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029574864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.276157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2012.2224360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061695997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2015.2426417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tns.2013.2293969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061737705"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015", 
    "datePublishedReg": "2015-01-01", 
    "description": "Interventional C-arm CT has the potential to visualize brain hemorrhages in the operating suite and save valuable time for stroke patients. Due to the critical constitution of the patients, C-arm CT images are frequently affected by patient motion artifacts, which often makes the reliable diagnosis of hemorrhages impossible. In this work, we propose a geometric optimization algorithm to compensate for these artifacts and present first results. The algorithm is based on a projection data consistency measure, which avoids computationally expensive forward- and backprojection steps in the optimization process. The ability to estimate movements with this measure is investigated for different rigid degrees of freedom. It was shown that out-of-plane parameters, i.e. geometrical deviations perpendicular to the plane of rotation, can be estimated with high precision. Movement artifacts in reconstructions are consistently reduced throughout all analyzed clinical datasets. With its low computational cost and high robustness, the proposed algorithm is well-suited for integration into clinical software prototypes for further evaluation.", 
    "editor": [
      {
        "familyName": "Navab", 
        "givenName": "Nassir", 
        "type": "Person"
      }, 
      {
        "familyName": "Hornegger", 
        "givenName": "Joachim", 
        "type": "Person"
      }, 
      {
        "familyName": "Wells", 
        "givenName": "William M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Frangi", 
        "givenName": "Alejandro", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-24553-9_37", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-24552-2", 
        "978-3-319-24553-9"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015", 
      "type": "Book"
    }, 
    "name": "Rigid Motion Compensation in Interventional C-arm CT Using Consistency Measure on\u00a0Projection Data", 
    "pagination": "298-306", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-24553-9_37"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9ea6e88f8c756e093757d526c2fa38d4ebc9ebf1c73916017dd19396c43454c7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033303360"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-24553-9_37", 
      "https://app.dimensions.ai/details/publication/pub.1033303360"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000263.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-24553-9_37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24553-9_37'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-24553-9_37 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N068ef81ae77d4c21aec111514c77247d
4 schema:citation sg:pub.10.1007/978-3-642-23623-5_65
5 sg:pub.10.1007/s00234-008-0419-1
6 https://doi.org/10.1109/42.276157
7 https://doi.org/10.1109/tmi.2012.2224360
8 https://doi.org/10.1109/tmi.2015.2426417
9 https://doi.org/10.1109/tns.2013.2293969
10 https://doi.org/10.1117/12.811505
11 https://doi.org/10.1118/1.595715
12 schema:datePublished 2015
13 schema:datePublishedReg 2015-01-01
14 schema:description Interventional C-arm CT has the potential to visualize brain hemorrhages in the operating suite and save valuable time for stroke patients. Due to the critical constitution of the patients, C-arm CT images are frequently affected by patient motion artifacts, which often makes the reliable diagnosis of hemorrhages impossible. In this work, we propose a geometric optimization algorithm to compensate for these artifacts and present first results. The algorithm is based on a projection data consistency measure, which avoids computationally expensive forward- and backprojection steps in the optimization process. The ability to estimate movements with this measure is investigated for different rigid degrees of freedom. It was shown that out-of-plane parameters, i.e. geometrical deviations perpendicular to the plane of rotation, can be estimated with high precision. Movement artifacts in reconstructions are consistently reduced throughout all analyzed clinical datasets. With its low computational cost and high robustness, the proposed algorithm is well-suited for integration into clinical software prototypes for further evaluation.
15 schema:editor Ne1da340b925a45659088d42c264adaef
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N60b4bc7c24114a7ca110f886b314aa71
20 schema:name Rigid Motion Compensation in Interventional C-arm CT Using Consistency Measure on Projection Data
21 schema:pagination 298-306
22 schema:productId N1033d50a54b44f96929d0f534a28ff79
23 N1aed7f73cb6d48c1b6241937117744bb
24 Ne9d6eb4958354a99955ef54d01301245
25 schema:publisher Na47d71d718634dd2a05dec9a806511b2
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033303360
27 https://doi.org/10.1007/978-3-319-24553-9_37
28 schema:sdDatePublished 2019-04-15T18:12
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N2ba8bc4cf4cb47a5aeb7d35a0f8ec15f
31 schema:url http://link.springer.com/10.1007/978-3-319-24553-9_37
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N068ef81ae77d4c21aec111514c77247d rdf:first sg:person.01075317001.14
36 rdf:rest N0e5717adf722486cb6982f56206a6343
37 N0e5717adf722486cb6982f56206a6343 rdf:first sg:person.0742175117.45
38 rdf:rest rdf:nil
39 N1033d50a54b44f96929d0f534a28ff79 schema:name dimensions_id
40 schema:value pub.1033303360
41 rdf:type schema:PropertyValue
42 N18e81db72bdd4c04acd4fe8c594ecc95 schema:familyName Wells
43 schema:givenName William M.
44 rdf:type schema:Person
45 N1aed7f73cb6d48c1b6241937117744bb schema:name readcube_id
46 schema:value 9ea6e88f8c756e093757d526c2fa38d4ebc9ebf1c73916017dd19396c43454c7
47 rdf:type schema:PropertyValue
48 N2ba8bc4cf4cb47a5aeb7d35a0f8ec15f schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N4d2ebe42470f4377a96ea054f9274e01 rdf:first Nab6274c7c0954e91a33538021b8e2eb0
51 rdf:rest rdf:nil
52 N4fb743079123457bb58b2fc4594b36e0 schema:name Institute for Medical Engineering, University of Magdeburg
53 rdf:type schema:Organization
54 N60b4bc7c24114a7ca110f886b314aa71 schema:isbn 978-3-319-24552-2
55 978-3-319-24553-9
56 schema:name Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015
57 rdf:type schema:Book
58 N67ff748c01334ff3a5d171d3f8062558 rdf:first N75c00a03e84c4360a17d72b89157abd6
59 rdf:rest N6d967166ca084bc1a3d2523de6908fe6
60 N6d967166ca084bc1a3d2523de6908fe6 rdf:first N18e81db72bdd4c04acd4fe8c594ecc95
61 rdf:rest N4d2ebe42470f4377a96ea054f9274e01
62 N75c00a03e84c4360a17d72b89157abd6 schema:familyName Hornegger
63 schema:givenName Joachim
64 rdf:type schema:Person
65 N9b1febc16e7a4a298e4c204d4537c7b9 schema:name Institute for Medical Engineering, University of Magdeburg
66 rdf:type schema:Organization
67 Na0f710dcac3844798e5fe1c06bdaf1cb schema:familyName Navab
68 schema:givenName Nassir
69 rdf:type schema:Person
70 Na47d71d718634dd2a05dec9a806511b2 schema:location Cham
71 schema:name Springer International Publishing
72 rdf:type schema:Organisation
73 Nab6274c7c0954e91a33538021b8e2eb0 schema:familyName Frangi
74 schema:givenName Alejandro
75 rdf:type schema:Person
76 Ne1da340b925a45659088d42c264adaef rdf:first Na0f710dcac3844798e5fe1c06bdaf1cb
77 rdf:rest N67ff748c01334ff3a5d171d3f8062558
78 Ne9d6eb4958354a99955ef54d01301245 schema:name doi
79 schema:value 10.1007/978-3-319-24553-9_37
80 rdf:type schema:PropertyValue
81 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
82 schema:name Information and Computing Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
85 schema:name Artificial Intelligence and Image Processing
86 rdf:type schema:DefinedTerm
87 sg:person.01075317001.14 schema:affiliation N9b1febc16e7a4a298e4c204d4537c7b9
88 schema:familyName Frysch
89 schema:givenName Robert
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075317001.14
91 rdf:type schema:Person
92 sg:person.0742175117.45 schema:affiliation N4fb743079123457bb58b2fc4594b36e0
93 schema:familyName Rose
94 schema:givenName Georg
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742175117.45
96 rdf:type schema:Person
97 sg:pub.10.1007/978-3-642-23623-5_65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023012594
98 https://doi.org/10.1007/978-3-642-23623-5_65
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s00234-008-0419-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004627416
101 https://doi.org/10.1007/s00234-008-0419-1
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/42.276157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170216
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/tmi.2012.2224360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061695997
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/tmi.2015.2426417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696526
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/tns.2013.2293969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061737705
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1117/12.811505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029574864
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1118/1.595715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003600582
114 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...