Interactive Similarity Analysis and Error Detection in Large Tree Collections View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Jens Fangerau , Burkhard Höckendorf , Bastian Rieck , Christian Heine , Joachim Wittbrodt , Heike Leitte

ABSTRACT

Automatic feature tracking is widely used for the analysis of time-dependent data. If the features exhibit splitting behavior, it is best characterized by tree-like tracks. For a large number of time steps, each with numerous features, these data become increasingly difficult to analyze. In this paper, we focus on the problem of comparing and contrasting hundreds to thousands of trees to support developmental biologists in their study of cell division patterns in embryos. To this end, we propose a new visual analytics method called structure map. This two-dimensional, color-coded map arranges trees into tiles along a Hilbert curve, preserving a tree similarity measure, which we define via graph Laplacians. The structure map supports both global and local analysis based on user-selected tree descriptors. It helps analysts identify similar trees, observe clustering and sizes of clusters within the forest, and detect outliers in a compact and uniform representation. We apply the structure map for analyzing 3D cell tracking from two periods of zebrafish embryogenesis: blastulation to early epiboly and tailbud extension. In both cases, we show how the structure map supported biologists to find systematic differences in the data set as well as detect erroneous cell behaviors. More... »

PAGES

287-307

Book

TITLE

Visualization in Medicine and Life Sciences III

ISBN

978-3-319-24521-8
978-3-319-24523-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-24523-2_13

DOI

http://dx.doi.org/10.1007/978-3-319-24523-2_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051153852


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Computer Graphics and Visualization, Heidelberg University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fangerau", 
        "givenName": "Jens", 
        "id": "sg:person.01217530037.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217530037.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Centre for Organismal Studies, Heidelberg University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6ckendorf", 
        "givenName": "Burkhard", 
        "id": "sg:person.01316756150.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316756150.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Computer Graphics and Visualization, Heidelberg University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rieck", 
        "givenName": "Bastian", 
        "id": "sg:person.01240277427.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240277427.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Scientific Visualization Group, ETH Z\u00fcrich"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heine", 
        "givenName": "Christian", 
        "id": "sg:person.01322065347.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322065347.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Centre for Organismal Studies, Heidelberg University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wittbrodt", 
        "givenName": "Joachim", 
        "id": "sg:person.01115005153.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115005153.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Computer Graphics and Visualization, Heidelberg University"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leitte", 
        "givenName": "Heike", 
        "id": "sg:person.01331417513.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331417513.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.tcs.2004.12.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000647128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/dev.022426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004127798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-10520-3_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006085366", 
          "https://doi.org/10.1007/978-3-642-10520-3_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-10520-3_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006085366", 
          "https://doi.org/10.1007/978-3-642-10520-3_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2008.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012464535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/102377.115768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014099065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01202269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018989724", 
          "https://doi.org/10.1007/bf01202269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01202269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018989724", 
          "https://doi.org/10.1007/bf01202269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-63385-5_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025252148", 
          "https://doi.org/10.1007/3-540-63385-5_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56927-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026330191", 
          "https://doi.org/10.1007/978-3-642-56927-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56927-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026330191", 
          "https://doi.org/10.1007/978-3-642-56927-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/aadm111223025a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039566404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1162493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050946491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8659.2011.01898.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053685212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1057/ivs.2009.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057572877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1057/ivs.2009.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057572877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1057/palgrave.ivs.9500036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057573336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1057/palgrave.ivs.9500036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057573336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.841119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcg.2011.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061391867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tse.1981.234519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061787468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2011.99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/882262.882291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063173541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/infvis.2005.1532129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093358384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vast.2009.5333893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094600872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vast.2011.6102439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094904619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2011.5872698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095053726"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Automatic feature tracking is widely used for the analysis of time-dependent data. If the features exhibit splitting behavior, it is best characterized by tree-like tracks. For a large number of time steps, each with numerous features, these data become increasingly difficult to analyze. In this paper, we focus on the problem of comparing and contrasting hundreds to thousands of trees to support developmental biologists in their study of cell division patterns in embryos. To this end, we propose a new visual analytics method called structure map. This two-dimensional, color-coded map arranges trees into tiles along a Hilbert curve, preserving a tree similarity measure, which we define via graph Laplacians. The structure map supports both global and local analysis based on user-selected tree descriptors. It helps analysts identify similar trees, observe clustering and sizes of clusters within the forest, and detect outliers in a compact and uniform representation. We apply the structure map for analyzing 3D cell tracking from two periods of zebrafish embryogenesis: blastulation to early epiboly and tailbud extension. In both cases, we show how the structure map supported biologists to find systematic differences in the data set as well as detect erroneous cell behaviors.", 
    "editor": [
      {
        "familyName": "Linsen", 
        "givenName": "Lars", 
        "type": "Person"
      }, 
      {
        "familyName": "Hamann", 
        "givenName": "Bernd", 
        "type": "Person"
      }, 
      {
        "familyName": "Hege", 
        "givenName": "Hans-Christian", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-24523-2_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-24521-8", 
        "978-3-319-24523-2"
      ], 
      "name": "Visualization in Medicine and Life Sciences III", 
      "type": "Book"
    }, 
    "name": "Interactive Similarity Analysis and Error Detection in Large Tree Collections", 
    "pagination": "287-307", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-24523-2_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f3ad5ed4220659bfc76227f2a8a780e2c247ef56d1ff68ff7c4c38e7f61903d0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051153852"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-24523-2_13", 
      "https://app.dimensions.ai/details/publication/pub.1051153852"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000275.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-24523-2_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24523-2_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24523-2_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24523-2_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24523-2_13'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      23 PREDICATES      49 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-24523-2_13 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N54a103bdeba748b68c7eb4bd218f5f99
4 schema:citation sg:pub.10.1007/3-540-63385-5_30
5 sg:pub.10.1007/978-3-642-10520-3_9
6 sg:pub.10.1007/978-3-642-56927-2
7 sg:pub.10.1007/bf01202269
8 https://doi.org/10.1016/j.patcog.2008.03.011
9 https://doi.org/10.1016/j.tcs.2004.12.030
10 https://doi.org/10.1057/ivs.2009.29
11 https://doi.org/10.1057/palgrave.ivs.9500036
12 https://doi.org/10.1109/2945.841119
13 https://doi.org/10.1109/infvis.2005.1532129
14 https://doi.org/10.1109/isbi.2011.5872698
15 https://doi.org/10.1109/mcg.2011.103
16 https://doi.org/10.1109/tse.1981.234519
17 https://doi.org/10.1109/tvcg.2011.99
18 https://doi.org/10.1109/vast.2009.5333893
19 https://doi.org/10.1109/vast.2011.6102439
20 https://doi.org/10.1111/j.1467-8659.2011.01898.x
21 https://doi.org/10.1126/science.1162493
22 https://doi.org/10.1145/102377.115768
23 https://doi.org/10.1145/882262.882291
24 https://doi.org/10.1242/dev.022426
25 https://doi.org/10.2298/aadm111223025a
26 schema:datePublished 2016
27 schema:datePublishedReg 2016-01-01
28 schema:description Automatic feature tracking is widely used for the analysis of time-dependent data. If the features exhibit splitting behavior, it is best characterized by tree-like tracks. For a large number of time steps, each with numerous features, these data become increasingly difficult to analyze. In this paper, we focus on the problem of comparing and contrasting hundreds to thousands of trees to support developmental biologists in their study of cell division patterns in embryos. To this end, we propose a new visual analytics method called structure map. This two-dimensional, color-coded map arranges trees into tiles along a Hilbert curve, preserving a tree similarity measure, which we define via graph Laplacians. The structure map supports both global and local analysis based on user-selected tree descriptors. It helps analysts identify similar trees, observe clustering and sizes of clusters within the forest, and detect outliers in a compact and uniform representation. We apply the structure map for analyzing 3D cell tracking from two periods of zebrafish embryogenesis: blastulation to early epiboly and tailbud extension. In both cases, we show how the structure map supported biologists to find systematic differences in the data set as well as detect erroneous cell behaviors.
29 schema:editor N098c932f5a444bc6b1417ff990855dd3
30 schema:genre chapter
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N69fb1b6f505c46a78053e438839b22e0
34 schema:name Interactive Similarity Analysis and Error Detection in Large Tree Collections
35 schema:pagination 287-307
36 schema:productId N5c5ea9cc7b2449ca92598ac1c40daa08
37 Nb2923838a11c43cdb7c612f62b18983a
38 Nc31021dda6394207985654d8b51bacf9
39 schema:publisher N4164391656a04a3388e0afd6c813aa37
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051153852
41 https://doi.org/10.1007/978-3-319-24523-2_13
42 schema:sdDatePublished 2019-04-15T21:05
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Ndd1a5dbfe50143cf960e454166666f19
45 schema:url http://link.springer.com/10.1007/978-3-319-24523-2_13
46 sgo:license sg:explorer/license/
47 sgo:sdDataset chapters
48 rdf:type schema:Chapter
49 N098c932f5a444bc6b1417ff990855dd3 rdf:first Na6b74d204b9b4fa2935dfc1f66d42ff2
50 rdf:rest N5db54c800fae431eaf527a2c9a9ebeb8
51 N1f13933c411b45a88824f82e44a594a8 schema:name Centre for Organismal Studies, Heidelberg University
52 rdf:type schema:Organization
53 N4164391656a04a3388e0afd6c813aa37 schema:location Cham
54 schema:name Springer International Publishing
55 rdf:type schema:Organisation
56 N4ca8b5cd247b47059ff1545dd762b591 schema:name Computer Graphics and Visualization, Heidelberg University
57 rdf:type schema:Organization
58 N5003427be3ba4a4c9460c5a5087a027e rdf:first sg:person.01115005153.50
59 rdf:rest Nfacb0046e8434f6896ad2e775385d340
60 N54a103bdeba748b68c7eb4bd218f5f99 rdf:first sg:person.01217530037.84
61 rdf:rest N8aa1cfbe5bf54eceb4eb8cabf73f0d80
62 N554d595eea8c4cb58e952f072d7981e9 schema:name Computer Graphics and Visualization, Heidelberg University
63 rdf:type schema:Organization
64 N5c5ea9cc7b2449ca92598ac1c40daa08 schema:name dimensions_id
65 schema:value pub.1051153852
66 rdf:type schema:PropertyValue
67 N5d0e962c0f314ac5a1539a95067d3ca1 rdf:first sg:person.01240277427.21
68 rdf:rest N86a59ae2b74643b0a5b6a55a2f8076d0
69 N5db54c800fae431eaf527a2c9a9ebeb8 rdf:first N896271479b3849c1a72aaeb5b8e89e50
70 rdf:rest Ne037294304244d119fd277d9025455fe
71 N639e65a200d34064ab0a08b76a4bc821 schema:name Computer Graphics and Visualization, Heidelberg University
72 rdf:type schema:Organization
73 N69fb1b6f505c46a78053e438839b22e0 schema:isbn 978-3-319-24521-8
74 978-3-319-24523-2
75 schema:name Visualization in Medicine and Life Sciences III
76 rdf:type schema:Book
77 N7d525cde0d81455f8e7dd5bb9742fb13 schema:familyName Hege
78 schema:givenName Hans-Christian
79 rdf:type schema:Person
80 N86a59ae2b74643b0a5b6a55a2f8076d0 rdf:first sg:person.01322065347.76
81 rdf:rest N5003427be3ba4a4c9460c5a5087a027e
82 N896271479b3849c1a72aaeb5b8e89e50 schema:familyName Hamann
83 schema:givenName Bernd
84 rdf:type schema:Person
85 N8aa1cfbe5bf54eceb4eb8cabf73f0d80 rdf:first sg:person.01316756150.04
86 rdf:rest N5d0e962c0f314ac5a1539a95067d3ca1
87 N9fd8b916701843ccb9f8dbaf5ecc792d schema:name Scientific Visualization Group, ETH Zürich
88 rdf:type schema:Organization
89 Na6b74d204b9b4fa2935dfc1f66d42ff2 schema:familyName Linsen
90 schema:givenName Lars
91 rdf:type schema:Person
92 Nb2923838a11c43cdb7c612f62b18983a schema:name readcube_id
93 schema:value f3ad5ed4220659bfc76227f2a8a780e2c247ef56d1ff68ff7c4c38e7f61903d0
94 rdf:type schema:PropertyValue
95 Nc31021dda6394207985654d8b51bacf9 schema:name doi
96 schema:value 10.1007/978-3-319-24523-2_13
97 rdf:type schema:PropertyValue
98 Ndb270fa0f1d64d2eb69e8fb7e6cf9c99 schema:name Centre for Organismal Studies, Heidelberg University
99 rdf:type schema:Organization
100 Ndd1a5dbfe50143cf960e454166666f19 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Ne037294304244d119fd277d9025455fe rdf:first N7d525cde0d81455f8e7dd5bb9742fb13
103 rdf:rest rdf:nil
104 Nfacb0046e8434f6896ad2e775385d340 rdf:first sg:person.01331417513.23
105 rdf:rest rdf:nil
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
110 schema:name Information Systems
111 rdf:type schema:DefinedTerm
112 sg:person.01115005153.50 schema:affiliation N1f13933c411b45a88824f82e44a594a8
113 schema:familyName Wittbrodt
114 schema:givenName Joachim
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115005153.50
116 rdf:type schema:Person
117 sg:person.01217530037.84 schema:affiliation N554d595eea8c4cb58e952f072d7981e9
118 schema:familyName Fangerau
119 schema:givenName Jens
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217530037.84
121 rdf:type schema:Person
122 sg:person.01240277427.21 schema:affiliation N639e65a200d34064ab0a08b76a4bc821
123 schema:familyName Rieck
124 schema:givenName Bastian
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240277427.21
126 rdf:type schema:Person
127 sg:person.01316756150.04 schema:affiliation Ndb270fa0f1d64d2eb69e8fb7e6cf9c99
128 schema:familyName Höckendorf
129 schema:givenName Burkhard
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316756150.04
131 rdf:type schema:Person
132 sg:person.01322065347.76 schema:affiliation N9fd8b916701843ccb9f8dbaf5ecc792d
133 schema:familyName Heine
134 schema:givenName Christian
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322065347.76
136 rdf:type schema:Person
137 sg:person.01331417513.23 schema:affiliation N4ca8b5cd247b47059ff1545dd762b591
138 schema:familyName Leitte
139 schema:givenName Heike
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331417513.23
141 rdf:type schema:Person
142 sg:pub.10.1007/3-540-63385-5_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025252148
143 https://doi.org/10.1007/3-540-63385-5_30
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/978-3-642-10520-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006085366
146 https://doi.org/10.1007/978-3-642-10520-3_9
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/978-3-642-56927-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026330191
149 https://doi.org/10.1007/978-3-642-56927-2
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/bf01202269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018989724
152 https://doi.org/10.1007/bf01202269
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.patcog.2008.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012464535
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.tcs.2004.12.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000647128
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1057/ivs.2009.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057572877
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1057/palgrave.ivs.9500036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057573336
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/2945.841119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146328
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/infvis.2005.1532129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093358384
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/isbi.2011.5872698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095053726
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/mcg.2011.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061391867
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tse.1981.234519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061787468
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tvcg.2011.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813719
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/vast.2009.5333893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094600872
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/vast.2011.6102439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094904619
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1111/j.1467-8659.2011.01898.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053685212
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1126/science.1162493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050946491
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1145/102377.115768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014099065
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1145/882262.882291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063173541
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1242/dev.022426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004127798
187 rdf:type schema:CreativeWork
188 https://doi.org/10.2298/aadm111223025a schema:sameAs https://app.dimensions.ai/details/publication/pub.1039566404
189 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...