Interactive Similarity Analysis and Error Detection in Large Tree Collections View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Jens Fangerau , Burkhard Höckendorf , Bastian Rieck , Christian Heine , Joachim Wittbrodt , Heike Leitte

ABSTRACT

Automatic feature tracking is widely used for the analysis of time-dependent data. If the features exhibit splitting behavior, it is best characterized by tree-like tracks. For a large number of time steps, each with numerous features, these data become increasingly difficult to analyze. In this paper, we focus on the problem of comparing and contrasting hundreds to thousands of trees to support developmental biologists in their study of cell division patterns in embryos. To this end, we propose a new visual analytics method called structure map. This two-dimensional, color-coded map arranges trees into tiles along a Hilbert curve, preserving a tree similarity measure, which we define via graph Laplacians. The structure map supports both global and local analysis based on user-selected tree descriptors. It helps analysts identify similar trees, observe clustering and sizes of clusters within the forest, and detect outliers in a compact and uniform representation. We apply the structure map for analyzing 3D cell tracking from two periods of zebrafish embryogenesis: blastulation to early epiboly and tailbud extension. In both cases, we show how the structure map supported biologists to find systematic differences in the data set as well as detect erroneous cell behaviors. More... »

PAGES

287-307

References to SciGraph publications

  • 1995-03. An algorithm to find agreement subtrees in JOURNAL OF CLASSIFICATION
  • 2009. Diverging Color Maps for Scientific Visualization in ADVANCES IN VISUAL COMPUTING
  • 2001. Self-Organizing Maps in NONE
  • 1997. Alogtime algorithms for tree isomorphism, comparison, and canonization in COMPUTATIONAL LOGIC AND PROOF THEORY
  • Book

    TITLE

    Visualization in Medicine and Life Sciences III

    ISBN

    978-3-319-24521-8
    978-3-319-24523-2

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-319-24523-2_13

    DOI

    http://dx.doi.org/10.1007/978-3-319-24523-2_13

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051153852


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Computer Graphics and Visualization, Heidelberg University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fangerau", 
            "givenName": "Jens", 
            "id": "sg:person.01217530037.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217530037.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Centre for Organismal Studies, Heidelberg University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "H\u00f6ckendorf", 
            "givenName": "Burkhard", 
            "id": "sg:person.01316756150.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316756150.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Computer Graphics and Visualization, Heidelberg University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rieck", 
            "givenName": "Bastian", 
            "id": "sg:person.01240277427.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240277427.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Scientific Visualization Group, ETH Z\u00fcrich"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heine", 
            "givenName": "Christian", 
            "id": "sg:person.01322065347.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322065347.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Centre for Organismal Studies, Heidelberg University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wittbrodt", 
            "givenName": "Joachim", 
            "id": "sg:person.01115005153.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115005153.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Computer Graphics and Visualization, Heidelberg University"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Leitte", 
            "givenName": "Heike", 
            "id": "sg:person.01331417513.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331417513.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.tcs.2004.12.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000647128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1242/dev.022426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004127798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10520-3_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006085366", 
              "https://doi.org/10.1007/978-3-642-10520-3_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-10520-3_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006085366", 
              "https://doi.org/10.1007/978-3-642-10520-3_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2008.03.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012464535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/102377.115768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014099065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01202269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018989724", 
              "https://doi.org/10.1007/bf01202269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01202269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018989724", 
              "https://doi.org/10.1007/bf01202269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-63385-5_30", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025252148", 
              "https://doi.org/10.1007/3-540-63385-5_30"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-56927-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026330191", 
              "https://doi.org/10.1007/978-3-642-56927-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-56927-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026330191", 
              "https://doi.org/10.1007/978-3-642-56927-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2298/aadm111223025a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039566404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1162493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050946491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8659.2011.01898.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053685212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1057/ivs.2009.29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057572877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1057/ivs.2009.29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057572877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1057/palgrave.ivs.9500036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057573336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1057/palgrave.ivs.9500036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057573336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/2945.841119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061146328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcg.2011.103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061391867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tse.1981.234519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061787468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2011.99", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061813719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/882262.882291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063173541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/infvis.2005.1532129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093358384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/vast.2009.5333893", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094600872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/vast.2011.6102439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094904619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/isbi.2011.5872698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095053726"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016", 
        "datePublishedReg": "2016-01-01", 
        "description": "Automatic feature tracking is widely used for the analysis of time-dependent data. If the features exhibit splitting behavior, it is best characterized by tree-like tracks. For a large number of time steps, each with numerous features, these data become increasingly difficult to analyze. In this paper, we focus on the problem of comparing and contrasting hundreds to thousands of trees to support developmental biologists in their study of cell division patterns in embryos. To this end, we propose a new visual analytics method called structure map. This two-dimensional, color-coded map arranges trees into tiles along a Hilbert curve, preserving a tree similarity measure, which we define via graph Laplacians. The structure map supports both global and local analysis based on user-selected tree descriptors. It helps analysts identify similar trees, observe clustering and sizes of clusters within the forest, and detect outliers in a compact and uniform representation. We apply the structure map for analyzing 3D cell tracking from two periods of zebrafish embryogenesis: blastulation to early epiboly and tailbud extension. In both cases, we show how the structure map supported biologists to find systematic differences in the data set as well as detect erroneous cell behaviors.", 
        "editor": [
          {
            "familyName": "Linsen", 
            "givenName": "Lars", 
            "type": "Person"
          }, 
          {
            "familyName": "Hamann", 
            "givenName": "Bernd", 
            "type": "Person"
          }, 
          {
            "familyName": "Hege", 
            "givenName": "Hans-Christian", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-319-24523-2_13", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-319-24521-8", 
            "978-3-319-24523-2"
          ], 
          "name": "Visualization in Medicine and Life Sciences III", 
          "type": "Book"
        }, 
        "name": "Interactive Similarity Analysis and Error Detection in Large Tree Collections", 
        "pagination": "287-307", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-319-24523-2_13"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f3ad5ed4220659bfc76227f2a8a780e2c247ef56d1ff68ff7c4c38e7f61903d0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051153852"
            ]
          }
        ], 
        "publisher": {
          "location": "Cham", 
          "name": "Springer International Publishing", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-319-24523-2_13", 
          "https://app.dimensions.ai/details/publication/pub.1051153852"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T21:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000275.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-319-24523-2_13"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24523-2_13'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24523-2_13'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24523-2_13'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24523-2_13'


     

    This table displays all metadata directly associated to this object as RDF triples.

    189 TRIPLES      23 PREDICATES      49 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-319-24523-2_13 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author Ne714675746e046719a388679c966c265
    4 schema:citation sg:pub.10.1007/3-540-63385-5_30
    5 sg:pub.10.1007/978-3-642-10520-3_9
    6 sg:pub.10.1007/978-3-642-56927-2
    7 sg:pub.10.1007/bf01202269
    8 https://doi.org/10.1016/j.patcog.2008.03.011
    9 https://doi.org/10.1016/j.tcs.2004.12.030
    10 https://doi.org/10.1057/ivs.2009.29
    11 https://doi.org/10.1057/palgrave.ivs.9500036
    12 https://doi.org/10.1109/2945.841119
    13 https://doi.org/10.1109/infvis.2005.1532129
    14 https://doi.org/10.1109/isbi.2011.5872698
    15 https://doi.org/10.1109/mcg.2011.103
    16 https://doi.org/10.1109/tse.1981.234519
    17 https://doi.org/10.1109/tvcg.2011.99
    18 https://doi.org/10.1109/vast.2009.5333893
    19 https://doi.org/10.1109/vast.2011.6102439
    20 https://doi.org/10.1111/j.1467-8659.2011.01898.x
    21 https://doi.org/10.1126/science.1162493
    22 https://doi.org/10.1145/102377.115768
    23 https://doi.org/10.1145/882262.882291
    24 https://doi.org/10.1242/dev.022426
    25 https://doi.org/10.2298/aadm111223025a
    26 schema:datePublished 2016
    27 schema:datePublishedReg 2016-01-01
    28 schema:description Automatic feature tracking is widely used for the analysis of time-dependent data. If the features exhibit splitting behavior, it is best characterized by tree-like tracks. For a large number of time steps, each with numerous features, these data become increasingly difficult to analyze. In this paper, we focus on the problem of comparing and contrasting hundreds to thousands of trees to support developmental biologists in their study of cell division patterns in embryos. To this end, we propose a new visual analytics method called structure map. This two-dimensional, color-coded map arranges trees into tiles along a Hilbert curve, preserving a tree similarity measure, which we define via graph Laplacians. The structure map supports both global and local analysis based on user-selected tree descriptors. It helps analysts identify similar trees, observe clustering and sizes of clusters within the forest, and detect outliers in a compact and uniform representation. We apply the structure map for analyzing 3D cell tracking from two periods of zebrafish embryogenesis: blastulation to early epiboly and tailbud extension. In both cases, we show how the structure map supported biologists to find systematic differences in the data set as well as detect erroneous cell behaviors.
    29 schema:editor Nb4ca90a1cec24267a43eef6175fec11f
    30 schema:genre chapter
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N4810b4aad1ea435ebd11e88c3e713bd7
    34 schema:name Interactive Similarity Analysis and Error Detection in Large Tree Collections
    35 schema:pagination 287-307
    36 schema:productId N736b2f1bc07541799dd611f35fb66bcc
    37 Nb67430e4192f429da9098c61a989390c
    38 Nc19e9e89e101417699c0f70b50e8b826
    39 schema:publisher N099930e926764d949aeb97e4bb3fc6b0
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051153852
    41 https://doi.org/10.1007/978-3-319-24523-2_13
    42 schema:sdDatePublished 2019-04-15T21:05
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher N065c08ace8134da4a0d4b3fd0d51be73
    45 schema:url http://link.springer.com/10.1007/978-3-319-24523-2_13
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset chapters
    48 rdf:type schema:Chapter
    49 N065c08ace8134da4a0d4b3fd0d51be73 schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 N099930e926764d949aeb97e4bb3fc6b0 schema:location Cham
    52 schema:name Springer International Publishing
    53 rdf:type schema:Organisation
    54 N22a238ee07e6446e8c1f8ebe941c15b2 schema:name Centre for Organismal Studies, Heidelberg University
    55 rdf:type schema:Organization
    56 N2c3595aed54341279d07653603586aac schema:familyName Hege
    57 schema:givenName Hans-Christian
    58 rdf:type schema:Person
    59 N44ed7bd94c064b15bf371f600eb90ca2 schema:name Computer Graphics and Visualization, Heidelberg University
    60 rdf:type schema:Organization
    61 N4810b4aad1ea435ebd11e88c3e713bd7 schema:isbn 978-3-319-24521-8
    62 978-3-319-24523-2
    63 schema:name Visualization in Medicine and Life Sciences III
    64 rdf:type schema:Book
    65 N4c14dc1fd1014d7bbeb0339058071979 schema:name Scientific Visualization Group, ETH Zürich
    66 rdf:type schema:Organization
    67 N4dca9d95f45e4427af23ed2f6a89233c schema:familyName Linsen
    68 schema:givenName Lars
    69 rdf:type schema:Person
    70 N59360470619b4a369e1c44bf5c5b7088 rdf:first sg:person.01322065347.76
    71 rdf:rest Ne4bb110ab59a42a990700aa9f16209f4
    72 N64a6940874bb4fb78dcfbe4d2bc52d28 rdf:first sg:person.01240277427.21
    73 rdf:rest N59360470619b4a369e1c44bf5c5b7088
    74 N6f13e35c7b4242a3ba29057c425f2398 schema:name Centre for Organismal Studies, Heidelberg University
    75 rdf:type schema:Organization
    76 N736b2f1bc07541799dd611f35fb66bcc schema:name dimensions_id
    77 schema:value pub.1051153852
    78 rdf:type schema:PropertyValue
    79 N85f43dc1e38444e6aab896ec5d5a36d6 rdf:first Nbd95e28e4d3d4aee9cbf5918a361559c
    80 rdf:rest Nefee64cfb723412582a9c3cdd2c4386d
    81 N890089c99e514302b85e0a88da50eb67 schema:name Computer Graphics and Visualization, Heidelberg University
    82 rdf:type schema:Organization
    83 Nb4ca90a1cec24267a43eef6175fec11f rdf:first N4dca9d95f45e4427af23ed2f6a89233c
    84 rdf:rest N85f43dc1e38444e6aab896ec5d5a36d6
    85 Nb67430e4192f429da9098c61a989390c schema:name readcube_id
    86 schema:value f3ad5ed4220659bfc76227f2a8a780e2c247ef56d1ff68ff7c4c38e7f61903d0
    87 rdf:type schema:PropertyValue
    88 Nbd95e28e4d3d4aee9cbf5918a361559c schema:familyName Hamann
    89 schema:givenName Bernd
    90 rdf:type schema:Person
    91 Nc19e9e89e101417699c0f70b50e8b826 schema:name doi
    92 schema:value 10.1007/978-3-319-24523-2_13
    93 rdf:type schema:PropertyValue
    94 Nd7757387d1544dd7818b828845239a68 rdf:first sg:person.01331417513.23
    95 rdf:rest rdf:nil
    96 Nd99bd4ca6ef84f30a746f6522a795dc0 schema:name Computer Graphics and Visualization, Heidelberg University
    97 rdf:type schema:Organization
    98 Ne4bb110ab59a42a990700aa9f16209f4 rdf:first sg:person.01115005153.50
    99 rdf:rest Nd7757387d1544dd7818b828845239a68
    100 Ne714675746e046719a388679c966c265 rdf:first sg:person.01217530037.84
    101 rdf:rest Nfcb7e8f4b9b24d09a50bfc3d1243176c
    102 Nefee64cfb723412582a9c3cdd2c4386d rdf:first N2c3595aed54341279d07653603586aac
    103 rdf:rest rdf:nil
    104 Nfcb7e8f4b9b24d09a50bfc3d1243176c rdf:first sg:person.01316756150.04
    105 rdf:rest N64a6940874bb4fb78dcfbe4d2bc52d28
    106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Information and Computing Sciences
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Information Systems
    111 rdf:type schema:DefinedTerm
    112 sg:person.01115005153.50 schema:affiliation N6f13e35c7b4242a3ba29057c425f2398
    113 schema:familyName Wittbrodt
    114 schema:givenName Joachim
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115005153.50
    116 rdf:type schema:Person
    117 sg:person.01217530037.84 schema:affiliation Nd99bd4ca6ef84f30a746f6522a795dc0
    118 schema:familyName Fangerau
    119 schema:givenName Jens
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217530037.84
    121 rdf:type schema:Person
    122 sg:person.01240277427.21 schema:affiliation N890089c99e514302b85e0a88da50eb67
    123 schema:familyName Rieck
    124 schema:givenName Bastian
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240277427.21
    126 rdf:type schema:Person
    127 sg:person.01316756150.04 schema:affiliation N22a238ee07e6446e8c1f8ebe941c15b2
    128 schema:familyName Höckendorf
    129 schema:givenName Burkhard
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316756150.04
    131 rdf:type schema:Person
    132 sg:person.01322065347.76 schema:affiliation N4c14dc1fd1014d7bbeb0339058071979
    133 schema:familyName Heine
    134 schema:givenName Christian
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322065347.76
    136 rdf:type schema:Person
    137 sg:person.01331417513.23 schema:affiliation N44ed7bd94c064b15bf371f600eb90ca2
    138 schema:familyName Leitte
    139 schema:givenName Heike
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331417513.23
    141 rdf:type schema:Person
    142 sg:pub.10.1007/3-540-63385-5_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025252148
    143 https://doi.org/10.1007/3-540-63385-5_30
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/978-3-642-10520-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006085366
    146 https://doi.org/10.1007/978-3-642-10520-3_9
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/978-3-642-56927-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026330191
    149 https://doi.org/10.1007/978-3-642-56927-2
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf01202269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018989724
    152 https://doi.org/10.1007/bf01202269
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.patcog.2008.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012464535
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.tcs.2004.12.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000647128
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1057/ivs.2009.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057572877
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1057/palgrave.ivs.9500036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057573336
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/2945.841119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146328
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/infvis.2005.1532129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093358384
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/isbi.2011.5872698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095053726
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/mcg.2011.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061391867
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/tse.1981.234519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061787468
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/tvcg.2011.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813719
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/vast.2009.5333893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094600872
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1109/vast.2011.6102439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094904619
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1111/j.1467-8659.2011.01898.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053685212
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1126/science.1162493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050946491
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1145/102377.115768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014099065
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1145/882262.882291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063173541
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1242/dev.022426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004127798
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.2298/aadm111223025a schema:sameAs https://app.dimensions.ai/details/publication/pub.1039566404
    189 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...