Diagnostic Evaluations of the CHIMERE Model: Local Versus Advected Contributions of Fine Particles and Nitrate Formation Regime in the Paris ... View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016

AUTHORS

Herve Petetin , M. Beekmann , J. Sciare , M. Bressi , A. Rosso , O. Sanchez , V. Ghersi , R. Sarda-Estève , J.-E. Petit

ABSTRACT

Chemistry transport models (CTMs) are a powerful tool to investigate various features of the aerosol pollution in megacities, including its geographical origin or its sensitivity to anthropogenic emissions changes (scenario analysis). However, due to the numerous uncertainties still at stake in CTMs, assessing the reliability of the results obtained in these two common exercises remains a challenging task that usually requires specific observations and methodologies. In our work, we have taken advantage of some recent campaigns in the Paris region—PARTICULES and FRANCIPOL—to run a diagnostic evaluation of the CHIMERE model regarding these two issues. The first substantive point is to assess in what extent the model is able to retrieve the correct share between local production and regional advection of aerosol pollution in the Paris agglomeration. During a whole year, daily measurements of the fine particulate matter (PM2.5) and its main chemical constituents (elemental and organic carbon, nitrate, sulfate and ammonium) are available at various stations both in and around Paris (PARTICULES project). Based on back-trajectory data, we can locate the upwind station, from which the concentration is identified as the import, the local production being deduced from the urban concentration by subtraction. Uncertainties on these contributions are quantified. Small biases in urban background PM2.5 simulations (+16 %) hide significant error compensations between local and advected contributions, as well as in PM2.5 chemical compounds. In particular, wintertime OM imports appear strongly underestimated (potentially explained by uncertain continental woodburning emissions and missing SOA pathways) while local OM and EC production are overestimated all along the year (likely to be related to uncertainties in emissions and dynamics). A statistically significant local formation of nitrate is also highlighted from observations, but missed by the model. Together with the overestimation of nitrate imports, it leads to a bias of +51 % on the local PM2.5 contribution. In parallel to inorganic aerosols measurements, gaseous nitrate precursors (nitric acid and ammonia) have also been measured (FRANCIPOL project), which offers the opportunity to investigate the regime of nitrate formation in Paris and its sensitivity to precursor changes and to assess, again, the ability of the CHIMERE model to retrieve the observed sensitivity. Experimental data clearly point to NH3-rich conditions in the city (as indicated by high gas ratio values), but a quite similar sensitivity of nitrate concentrations to changes in nitric acid and ammonia. However, simulation results indicate that the model highly overestimates the sensitivity of nitrate to ammonia changes. Thus, while overall particulate matter levels are well reproduced by the model, differences with observations are much larger for local versus advected contributions, and the sensitivity of nitrate formation with respect to gaseous precursors. More... »

PAGES

465-470

Book

TITLE

Air Pollution Modeling and its Application XXIV

ISBN

978-3-319-24476-1
978-3-319-24478-5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-24478-5_74

DOI

http://dx.doi.org/10.1007/978-3-319-24478-5_74

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023351559


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Paul Sabatier University", 
          "id": "https://www.grid.ac/institutes/grid.15781.3a", 
          "name": [
            "LISA/IPSL, Laboratoire Interuniversitaire des Syst\u00e8mes Atmosph\u00e9riques, UMR CNRS 7583, Universit\u00e9 Paris Est Cr\u00e9teil (UPEC) et Universit\u00e9 Paris Diderot (UPD)", 
            "CNRS and Universit\u00e9 Paul Sabatier, Laboratoire d\u2019A\u00e9rologie"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petetin", 
        "givenName": "Herve", 
        "id": "sg:person.014246163622.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014246163622.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "LISA/IPSL, Laboratoire Interuniversitaire des Syst\u00e8mes Atmosph\u00e9riques, UMR CNRS 7583, Universit\u00e9 Paris Est Cr\u00e9teil (UPEC) et Universit\u00e9 Paris Diderot (UPD)"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beekmann", 
        "givenName": "M.", 
        "id": "sg:person.010045072003.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045072003.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "LSCE, Laboratoire des Sciences du Climat et de l\u2019Environnement, CNRS-CEA-UVSQ"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sciare", 
        "givenName": "J.", 
        "id": "sg:person.0655466072.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655466072.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "LSCE, Laboratoire des Sciences du Climat et de l\u2019Environnement, CNRS-CEA-UVSQ"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bressi", 
        "givenName": "M.", 
        "id": "sg:person.014732450615.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014732450615.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "AIRPARIF, Agence de surveillance de la qualit\u00e9 de l\u2019air"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosso", 
        "givenName": "A.", 
        "id": "sg:person.016325411615.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016325411615.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "AIRPARIF, Agence de surveillance de la qualit\u00e9 de l\u2019air"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanchez", 
        "givenName": "O.", 
        "id": "sg:person.013342715212.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013342715212.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "AIRPARIF, Agence de surveillance de la qualit\u00e9 de l\u2019air"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghersi", 
        "givenName": "V.", 
        "id": "sg:person.014634374731.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634374731.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "LSCE, Laboratoire des Sciences du Climat et de l\u2019Environnement, CNRS-CEA-UVSQ"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sarda-Est\u00e8ve", 
        "givenName": "R.", 
        "id": "sg:person.07566772533.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07566772533.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "LSCE, Laboratoire des Sciences du Climat et de l\u2019Environnement, CNRS-CEA-UVSQ"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petit", 
        "givenName": "J.-E.", 
        "id": "sg:person.016605073707.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016605073707.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2003jd004149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005343141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-13-7825-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025312800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acpd-15-23731-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036975088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-7-1483-2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048093208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-6-981-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072670340"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016", 
    "datePublishedReg": "2016-01-01", 
    "description": "Chemistry transport models (CTMs) are a powerful tool to investigate various features of the aerosol pollution in megacities, including its geographical origin or its sensitivity to anthropogenic emissions changes (scenario analysis). However, due to the numerous uncertainties still at stake in CTMs, assessing the reliability of the results obtained in these two common exercises remains a challenging task that usually requires specific observations and methodologies. In our work, we have taken advantage of some recent campaigns in the Paris region\u2014PARTICULES and FRANCIPOL\u2014to run a diagnostic evaluation of the CHIMERE model regarding these two issues. The first substantive point is to assess in what extent the model is able to retrieve the correct share between local production and regional advection of aerosol pollution in the Paris agglomeration. During a whole year, daily measurements of the fine particulate matter (PM2.5) and its main chemical constituents (elemental and organic carbon, nitrate, sulfate and ammonium) are available at various stations both in and around Paris (PARTICULES project). Based on back-trajectory data, we can locate the upwind station, from which the concentration is identified as the import, the local production being deduced from the urban concentration by subtraction. Uncertainties on these contributions are quantified. Small biases in urban background PM2.5 simulations (+16\u00a0%) hide significant error compensations between local and advected contributions, as well as in PM2.5 chemical compounds. In particular, wintertime OM imports appear strongly underestimated (potentially explained by uncertain continental woodburning emissions and missing SOA pathways) while local OM and EC production are overestimated all along the year (likely to be related to uncertainties in emissions and dynamics). A statistically significant local formation of nitrate is also highlighted from observations, but missed by the model. Together with the overestimation of nitrate imports, it leads to a bias of +51\u00a0% on the local PM2.5 contribution. In parallel to inorganic aerosols measurements, gaseous nitrate precursors (nitric acid and ammonia) have also been measured (FRANCIPOL project), which offers the opportunity to investigate the regime of nitrate formation in Paris and its sensitivity to precursor changes and to assess, again, the ability of the CHIMERE model to retrieve the observed sensitivity. Experimental data clearly point to NH3-rich conditions in the city (as indicated by high gas ratio values), but a quite similar sensitivity of nitrate concentrations to changes in nitric acid and ammonia. However, simulation results indicate that the model highly overestimates the sensitivity of nitrate to ammonia changes. Thus, while overall particulate matter levels are well reproduced by the model, differences with observations are much larger for local versus advected contributions, and the sensitivity of nitrate formation with respect to gaseous precursors.", 
    "editor": [
      {
        "familyName": "Steyn", 
        "givenName": "Douw G.", 
        "type": "Person"
      }, 
      {
        "familyName": "Chaumerliac", 
        "givenName": "Nadine", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-24478-5_74", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-24476-1", 
        "978-3-319-24478-5"
      ], 
      "name": "Air Pollution Modeling and its Application XXIV", 
      "type": "Book"
    }, 
    "name": "Diagnostic Evaluations of the CHIMERE Model: Local Versus Advected Contributions of Fine Particles and Nitrate Formation Regime in the Paris Megacity", 
    "pagination": "465-470", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-24478-5_74"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6f40d1f17ff34c6710822be504c6cbc0545720c5af297c27bc17424a309d5009"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023351559"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-24478-5_74", 
      "https://app.dimensions.ai/details/publication/pub.1023351559"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000257.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-24478-5_74"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24478-5_74'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24478-5_74'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24478-5_74'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24478-5_74'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-24478-5_74 schema:about anzsrc-for:03
2 anzsrc-for:0399
3 schema:author Na36648f240a04e3d88f64c8fc15869c1
4 schema:citation https://doi.org/10.1029/2003jd004149
5 https://doi.org/10.5194/acp-13-7825-2013
6 https://doi.org/10.5194/acpd-15-23731-2015
7 https://doi.org/10.5194/gmd-6-981-2013
8 https://doi.org/10.5194/gmd-7-1483-2014
9 schema:datePublished 2016
10 schema:datePublishedReg 2016-01-01
11 schema:description Chemistry transport models (CTMs) are a powerful tool to investigate various features of the aerosol pollution in megacities, including its geographical origin or its sensitivity to anthropogenic emissions changes (scenario analysis). However, due to the numerous uncertainties still at stake in CTMs, assessing the reliability of the results obtained in these two common exercises remains a challenging task that usually requires specific observations and methodologies. In our work, we have taken advantage of some recent campaigns in the Paris region—PARTICULES and FRANCIPOL—to run a diagnostic evaluation of the CHIMERE model regarding these two issues. The first substantive point is to assess in what extent the model is able to retrieve the correct share between local production and regional advection of aerosol pollution in the Paris agglomeration. During a whole year, daily measurements of the fine particulate matter (PM2.5) and its main chemical constituents (elemental and organic carbon, nitrate, sulfate and ammonium) are available at various stations both in and around Paris (PARTICULES project). Based on back-trajectory data, we can locate the upwind station, from which the concentration is identified as the import, the local production being deduced from the urban concentration by subtraction. Uncertainties on these contributions are quantified. Small biases in urban background PM2.5 simulations (+16 %) hide significant error compensations between local and advected contributions, as well as in PM2.5 chemical compounds. In particular, wintertime OM imports appear strongly underestimated (potentially explained by uncertain continental woodburning emissions and missing SOA pathways) while local OM and EC production are overestimated all along the year (likely to be related to uncertainties in emissions and dynamics). A statistically significant local formation of nitrate is also highlighted from observations, but missed by the model. Together with the overestimation of nitrate imports, it leads to a bias of +51 % on the local PM2.5 contribution. In parallel to inorganic aerosols measurements, gaseous nitrate precursors (nitric acid and ammonia) have also been measured (FRANCIPOL project), which offers the opportunity to investigate the regime of nitrate formation in Paris and its sensitivity to precursor changes and to assess, again, the ability of the CHIMERE model to retrieve the observed sensitivity. Experimental data clearly point to NH3-rich conditions in the city (as indicated by high gas ratio values), but a quite similar sensitivity of nitrate concentrations to changes in nitric acid and ammonia. However, simulation results indicate that the model highly overestimates the sensitivity of nitrate to ammonia changes. Thus, while overall particulate matter levels are well reproduced by the model, differences with observations are much larger for local versus advected contributions, and the sensitivity of nitrate formation with respect to gaseous precursors.
12 schema:editor N0265ee5122374e5d86405c7b8105a664
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N7edb6ed984104bca90908a161ebdec0c
17 schema:name Diagnostic Evaluations of the CHIMERE Model: Local Versus Advected Contributions of Fine Particles and Nitrate Formation Regime in the Paris Megacity
18 schema:pagination 465-470
19 schema:productId N25a0695812ed463493cd56c3ba9b669f
20 N9debbe0c055b43e09c216c9b384a1e51
21 Nb0d24688cf504631bb9be6855b129303
22 schema:publisher Nfc247b2681074df797b862ac4dd417b7
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023351559
24 https://doi.org/10.1007/978-3-319-24478-5_74
25 schema:sdDatePublished 2019-04-15T20:05
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nadf44d67d4b94683b660a3c33cb8ba3b
28 schema:url http://link.springer.com/10.1007/978-3-319-24478-5_74
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N011d02fb5d2445aea4ffa6dc4ce928ed rdf:first sg:person.016605073707.03
33 rdf:rest rdf:nil
34 N0265ee5122374e5d86405c7b8105a664 rdf:first Nf793b4d3d23c4bc884d88bff1f695d25
35 rdf:rest Nbe995f4904354781bf6e17c509d70e69
36 N06cc9b7805d94d5ca9cea6520059768d rdf:first sg:person.013342715212.87
37 rdf:rest Nfa7ae1b9a44b42918761e111e3ba87c9
38 N0c9a394a6ac64f42ab6786605f4ac4b2 rdf:first sg:person.010045072003.34
39 rdf:rest Nf7149283f5fc4df485ca920896f021d5
40 N10bc489b8e8746a68504c064f7015ffa rdf:first sg:person.016325411615.96
41 rdf:rest N06cc9b7805d94d5ca9cea6520059768d
42 N25a0695812ed463493cd56c3ba9b669f schema:name dimensions_id
43 schema:value pub.1023351559
44 rdf:type schema:PropertyValue
45 N3cedb891e8654353b75790a8d563c961 schema:name LSCE, Laboratoire des Sciences du Climat et de l’Environnement, CNRS-CEA-UVSQ
46 rdf:type schema:Organization
47 N69b4461927c847f7b02bbbff8790ad00 schema:name LSCE, Laboratoire des Sciences du Climat et de l’Environnement, CNRS-CEA-UVSQ
48 rdf:type schema:Organization
49 N6c5422a58ed645d5ad005a7864f18b5b rdf:first sg:person.07566772533.93
50 rdf:rest N011d02fb5d2445aea4ffa6dc4ce928ed
51 N6d11be0e1d6d4bb7a31c74bce2561a5a rdf:first sg:person.014732450615.38
52 rdf:rest N10bc489b8e8746a68504c064f7015ffa
53 N7edb6ed984104bca90908a161ebdec0c schema:isbn 978-3-319-24476-1
54 978-3-319-24478-5
55 schema:name Air Pollution Modeling and its Application XXIV
56 rdf:type schema:Book
57 N875d5ec15a644d85820c4259ca1501b8 schema:familyName Chaumerliac
58 schema:givenName Nadine
59 rdf:type schema:Person
60 N8dd398ef2b084924957347142dc072e2 schema:name LSCE, Laboratoire des Sciences du Climat et de l’Environnement, CNRS-CEA-UVSQ
61 rdf:type schema:Organization
62 N9debbe0c055b43e09c216c9b384a1e51 schema:name doi
63 schema:value 10.1007/978-3-319-24478-5_74
64 rdf:type schema:PropertyValue
65 N9f9953e7d97842b9805fc982179641da schema:name LISA/IPSL, Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil (UPEC) et Université Paris Diderot (UPD)
66 rdf:type schema:Organization
67 Na2838ad80a8e4ad2952dfa9f52f24a8e schema:name AIRPARIF, Agence de surveillance de la qualité de l’air
68 rdf:type schema:Organization
69 Na36648f240a04e3d88f64c8fc15869c1 rdf:first sg:person.014246163622.97
70 rdf:rest N0c9a394a6ac64f42ab6786605f4ac4b2
71 Nadf44d67d4b94683b660a3c33cb8ba3b schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Nb0d24688cf504631bb9be6855b129303 schema:name readcube_id
74 schema:value 6f40d1f17ff34c6710822be504c6cbc0545720c5af297c27bc17424a309d5009
75 rdf:type schema:PropertyValue
76 Nbe995f4904354781bf6e17c509d70e69 rdf:first N875d5ec15a644d85820c4259ca1501b8
77 rdf:rest rdf:nil
78 Ndf901cd87a744127b01bfed3e16c8e50 schema:name AIRPARIF, Agence de surveillance de la qualité de l’air
79 rdf:type schema:Organization
80 Ne61e22230553417894d4feee1113f8f5 schema:name AIRPARIF, Agence de surveillance de la qualité de l’air
81 rdf:type schema:Organization
82 Nf7149283f5fc4df485ca920896f021d5 rdf:first sg:person.0655466072.90
83 rdf:rest N6d11be0e1d6d4bb7a31c74bce2561a5a
84 Nf793b4d3d23c4bc884d88bff1f695d25 schema:familyName Steyn
85 schema:givenName Douw G.
86 rdf:type schema:Person
87 Nfa7ae1b9a44b42918761e111e3ba87c9 rdf:first sg:person.014634374731.81
88 rdf:rest N6c5422a58ed645d5ad005a7864f18b5b
89 Nfc247b2681074df797b862ac4dd417b7 schema:location Cham
90 schema:name Springer International Publishing
91 rdf:type schema:Organisation
92 Nfe62ac0f8d30454a864c965719494970 schema:name LSCE, Laboratoire des Sciences du Climat et de l’Environnement, CNRS-CEA-UVSQ
93 rdf:type schema:Organization
94 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
95 schema:name Chemical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
98 schema:name Other Chemical Sciences
99 rdf:type schema:DefinedTerm
100 sg:person.010045072003.34 schema:affiliation N9f9953e7d97842b9805fc982179641da
101 schema:familyName Beekmann
102 schema:givenName M.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045072003.34
104 rdf:type schema:Person
105 sg:person.013342715212.87 schema:affiliation Na2838ad80a8e4ad2952dfa9f52f24a8e
106 schema:familyName Sanchez
107 schema:givenName O.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013342715212.87
109 rdf:type schema:Person
110 sg:person.014246163622.97 schema:affiliation https://www.grid.ac/institutes/grid.15781.3a
111 schema:familyName Petetin
112 schema:givenName Herve
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014246163622.97
114 rdf:type schema:Person
115 sg:person.014634374731.81 schema:affiliation Ne61e22230553417894d4feee1113f8f5
116 schema:familyName Ghersi
117 schema:givenName V.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634374731.81
119 rdf:type schema:Person
120 sg:person.014732450615.38 schema:affiliation Nfe62ac0f8d30454a864c965719494970
121 schema:familyName Bressi
122 schema:givenName M.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014732450615.38
124 rdf:type schema:Person
125 sg:person.016325411615.96 schema:affiliation Ndf901cd87a744127b01bfed3e16c8e50
126 schema:familyName Rosso
127 schema:givenName A.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016325411615.96
129 rdf:type schema:Person
130 sg:person.016605073707.03 schema:affiliation N8dd398ef2b084924957347142dc072e2
131 schema:familyName Petit
132 schema:givenName J.-E.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016605073707.03
134 rdf:type schema:Person
135 sg:person.0655466072.90 schema:affiliation N69b4461927c847f7b02bbbff8790ad00
136 schema:familyName Sciare
137 schema:givenName J.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655466072.90
139 rdf:type schema:Person
140 sg:person.07566772533.93 schema:affiliation N3cedb891e8654353b75790a8d563c961
141 schema:familyName Sarda-Estève
142 schema:givenName R.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07566772533.93
144 rdf:type schema:Person
145 https://doi.org/10.1029/2003jd004149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005343141
146 rdf:type schema:CreativeWork
147 https://doi.org/10.5194/acp-13-7825-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025312800
148 rdf:type schema:CreativeWork
149 https://doi.org/10.5194/acpd-15-23731-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036975088
150 rdf:type schema:CreativeWork
151 https://doi.org/10.5194/gmd-6-981-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072670340
152 rdf:type schema:CreativeWork
153 https://doi.org/10.5194/gmd-7-1483-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048093208
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.15781.3a schema:alternateName Paul Sabatier University
156 schema:name CNRS and Université Paul Sabatier, Laboratoire d’Aérologie
157 LISA/IPSL, Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil (UPEC) et Université Paris Diderot (UPD)
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...