Typical Performances of Mesoscale Meteorology Models View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2016-02-11

AUTHORS

K. Heinke Schlünzen , Kristina Conrady , Christopher Purr

ABSTRACT

Reliable meteorological model results are one pre-condition for a good air quality simulation. The achievable quality of the meteorological information determines how accurate a concentration simulation can be. Many meteorological services as well as research institutions perform model evaluations on a routine basis, but the outcomes are not always published in refereed journals and little is known on typical model performances. This paper summarizes results of quantitative model evaluations that were published in refereed journals by statistically analyzing the published values for bias, root mean square error, rmse, as well as correlation coefficient, r. The 50 percentile of the quality measures rmse and r is used as threshold to derive typical performances. For r the 50 percentile is 0.47, 0.62, 0.89 and 0.87 for wind direction, wind speed, temperature and specific humidity, respectively. While bias values are small compared to their average values, rmse values are large. More... »

PAGES

447-457

Book

TITLE

Air Pollution Modeling and its Application XXIV

ISBN

978-3-319-24476-1
978-3-319-24478-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-24478-5_72

DOI

http://dx.doi.org/10.1007/978-3-319-24478-5_72

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019674824


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Meteorological Institute, CEN, University of Hamburg, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Meteorological Institute, CEN, University of Hamburg, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schl\u00fcnzen", 
        "givenName": "K. Heinke", 
        "id": "sg:person.012560545423.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Earth Sciences, Uppsala University, Uppsala, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.8993.b", 
          "name": [
            "Meteorological Institute, CEN, University of Hamburg, Hamburg, Germany", 
            "Department of Earth Sciences, Uppsala University, Uppsala, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conrady", 
        "givenName": "Kristina", 
        "id": "sg:person.015334065216.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015334065216.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meteorological Institute, CEN, University of Hamburg, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "Meteorological Institute, CEN, University of Hamburg, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Purr", 
        "givenName": "Christopher", 
        "id": "sg:person.07452310353.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452310353.11"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-02-11", 
    "datePublishedReg": "2016-02-11", 
    "description": "Reliable meteorological model results are one pre-condition for a good air quality simulation. The achievable quality of the meteorological information determines how accurate a concentration simulation can be. Many meteorological services as well as research institutions perform model evaluations on a routine basis, but the outcomes are not always published in refereed journals and little is known on typical model performances. This paper summarizes results of quantitative model evaluations that were published in refereed journals by statistically analyzing the published values for bias, root mean square error, rmse, as well as correlation coefficient, r. The 50 percentile of the quality measures rmse and r is used as threshold to derive typical performances. For r the 50 percentile is 0.47, 0.62, 0.89 and 0.87 for wind direction, wind speed, temperature and specific humidity, respectively. While bias values are small compared to their average values, rmse values are large.", 
    "editor": [
      {
        "familyName": "Steyn", 
        "givenName": "Douw G.", 
        "type": "Person"
      }, 
      {
        "familyName": "Chaumerliac", 
        "givenName": "Nadine", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-24478-5_72", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-24476-1", 
        "978-3-319-24478-5"
      ], 
      "name": "Air Pollution Modeling and its Application XXIV", 
      "type": "Book"
    }, 
    "keywords": [
      "mesoscale meteorology model", 
      "air quality simulations", 
      "typical performance", 
      "wind speed", 
      "quality simulations", 
      "concentration simulation", 
      "wind direction", 
      "root mean square error", 
      "model evaluation", 
      "specific humidity", 
      "model results", 
      "meteorology model", 
      "achievable quality", 
      "mean square error", 
      "RMSE values", 
      "meteorological information", 
      "simulations", 
      "square error", 
      "performance", 
      "model performance", 
      "RMSE", 
      "quantitative model evaluation", 
      "bias values", 
      "Meteorological Service", 
      "speed", 
      "temperature", 
      "humidity", 
      "average value", 
      "coefficient", 
      "values", 
      "results", 
      "direction", 
      "error", 
      "model", 
      "evaluation", 
      "routine basis", 
      "quality", 
      "correlation coefficient", 
      "research institutions", 
      "threshold", 
      "basis", 
      "bias", 
      "information", 
      "services", 
      "journals", 
      "percentile", 
      "refereed journals", 
      "outcomes", 
      "institutions", 
      "paper", 
      "Reliable meteorological model results", 
      "meteorological model results", 
      "good air quality simulation", 
      "typical model performances", 
      "quality measures rmse", 
      "measures rmse"
    ], 
    "name": "Typical Performances of Mesoscale Meteorology Models", 
    "pagination": "447-457", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019674824"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-24478-5_72"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-24478-5_72", 
      "https://app.dimensions.ai/details/publication/pub.1019674824"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_122.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-24478-5_72"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24478-5_72'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24478-5_72'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24478-5_72'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-24478-5_72'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      23 PREDICATES      81 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-24478-5_72 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N360733b6d4ca4d6ba35d2f10d96cf790
4 schema:datePublished 2016-02-11
5 schema:datePublishedReg 2016-02-11
6 schema:description Reliable meteorological model results are one pre-condition for a good air quality simulation. The achievable quality of the meteorological information determines how accurate a concentration simulation can be. Many meteorological services as well as research institutions perform model evaluations on a routine basis, but the outcomes are not always published in refereed journals and little is known on typical model performances. This paper summarizes results of quantitative model evaluations that were published in refereed journals by statistically analyzing the published values for bias, root mean square error, rmse, as well as correlation coefficient, r. The 50 percentile of the quality measures rmse and r is used as threshold to derive typical performances. For r the 50 percentile is 0.47, 0.62, 0.89 and 0.87 for wind direction, wind speed, temperature and specific humidity, respectively. While bias values are small compared to their average values, rmse values are large.
7 schema:editor N8bbe598d6c794c69b932fa2f9e4fb9df
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N9ff39969af0c4e169ef63ea32d048451
12 schema:keywords Meteorological Service
13 RMSE
14 RMSE values
15 Reliable meteorological model results
16 achievable quality
17 air quality simulations
18 average value
19 basis
20 bias
21 bias values
22 coefficient
23 concentration simulation
24 correlation coefficient
25 direction
26 error
27 evaluation
28 good air quality simulation
29 humidity
30 information
31 institutions
32 journals
33 mean square error
34 measures rmse
35 mesoscale meteorology model
36 meteorological information
37 meteorological model results
38 meteorology model
39 model
40 model evaluation
41 model performance
42 model results
43 outcomes
44 paper
45 percentile
46 performance
47 quality
48 quality measures rmse
49 quality simulations
50 quantitative model evaluation
51 refereed journals
52 research institutions
53 results
54 root mean square error
55 routine basis
56 services
57 simulations
58 specific humidity
59 speed
60 square error
61 temperature
62 threshold
63 typical model performances
64 typical performance
65 values
66 wind direction
67 wind speed
68 schema:name Typical Performances of Mesoscale Meteorology Models
69 schema:pagination 447-457
70 schema:productId N4cb6bb7cc48746908d44085a20fe0926
71 Nf08309471fc54c4ab04596a0a6e2656b
72 schema:publisher Nec1d002fc1ed4138b053feb5e6a21464
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019674824
74 https://doi.org/10.1007/978-3-319-24478-5_72
75 schema:sdDatePublished 2022-01-01T19:07
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N50355a2f79ba46888692fe794edca06a
78 schema:url https://doi.org/10.1007/978-3-319-24478-5_72
79 sgo:license sg:explorer/license/
80 sgo:sdDataset chapters
81 rdf:type schema:Chapter
82 N360733b6d4ca4d6ba35d2f10d96cf790 rdf:first sg:person.012560545423.41
83 rdf:rest N8de6413dd808448f9ea0b873610ec823
84 N4cb6bb7cc48746908d44085a20fe0926 schema:name dimensions_id
85 schema:value pub.1019674824
86 rdf:type schema:PropertyValue
87 N4cdc42395165466dbdd45c9b34dbb09b rdf:first sg:person.07452310353.11
88 rdf:rest rdf:nil
89 N50355a2f79ba46888692fe794edca06a schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N8bbe598d6c794c69b932fa2f9e4fb9df rdf:first Na19526c8105f40cbaab950ce8fff27e8
92 rdf:rest Ne38afd8d16c74e4494876a4efa23819d
93 N8de6413dd808448f9ea0b873610ec823 rdf:first sg:person.015334065216.01
94 rdf:rest N4cdc42395165466dbdd45c9b34dbb09b
95 N9ff39969af0c4e169ef63ea32d048451 schema:isbn 978-3-319-24476-1
96 978-3-319-24478-5
97 schema:name Air Pollution Modeling and its Application XXIV
98 rdf:type schema:Book
99 Na19526c8105f40cbaab950ce8fff27e8 schema:familyName Steyn
100 schema:givenName Douw G.
101 rdf:type schema:Person
102 Ndb19884ee1fe4f8980882438e153497b schema:familyName Chaumerliac
103 schema:givenName Nadine
104 rdf:type schema:Person
105 Ne38afd8d16c74e4494876a4efa23819d rdf:first Ndb19884ee1fe4f8980882438e153497b
106 rdf:rest rdf:nil
107 Nec1d002fc1ed4138b053feb5e6a21464 schema:name Springer Nature
108 rdf:type schema:Organisation
109 Nf08309471fc54c4ab04596a0a6e2656b schema:name doi
110 schema:value 10.1007/978-3-319-24478-5_72
111 rdf:type schema:PropertyValue
112 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
113 schema:name Earth Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
116 schema:name Atmospheric Sciences
117 rdf:type schema:DefinedTerm
118 sg:person.012560545423.41 schema:affiliation grid-institutes:grid.9026.d
119 schema:familyName Schlünzen
120 schema:givenName K. Heinke
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012560545423.41
122 rdf:type schema:Person
123 sg:person.015334065216.01 schema:affiliation grid-institutes:grid.8993.b
124 schema:familyName Conrady
125 schema:givenName Kristina
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015334065216.01
127 rdf:type schema:Person
128 sg:person.07452310353.11 schema:affiliation grid-institutes:grid.9026.d
129 schema:familyName Purr
130 schema:givenName Christopher
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07452310353.11
132 rdf:type schema:Person
133 grid-institutes:grid.8993.b schema:alternateName Department of Earth Sciences, Uppsala University, Uppsala, Sweden
134 schema:name Department of Earth Sciences, Uppsala University, Uppsala, Sweden
135 Meteorological Institute, CEN, University of Hamburg, Hamburg, Germany
136 rdf:type schema:Organization
137 grid-institutes:grid.9026.d schema:alternateName Meteorological Institute, CEN, University of Hamburg, Hamburg, Germany
138 schema:name Meteorological Institute, CEN, University of Hamburg, Hamburg, Germany
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...